• 제목/요약/키워드: WSN communication

Search Result 335, Processing Time 0.022 seconds

Implementation of Personalized Mobile Agent System using Agilla in Ubiquitous Sensor Network (USN환경에서 Agilla를 이용한 개인화된 모바일 에이전트 시스템 구현)

  • Kim, Gang-Seok;Lee, Dong-Cheol
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.5
    • /
    • pp.203-210
    • /
    • 2011
  • The current sensor network analyzes the data collected by the sensing of fixed sensor nodes and provides a service. However, this method cannot actively handle the state and the change in the position of people, 'the target for sensing and the change in the environment', including home automation, building automation and real-time road & weather information, and healthcare environment, etc. To support a dynamic situation which is appropriate for an individual in this diverse environment, it is necessary to provide actively differentiated specific information according to the movement of people and the changes in the environment. In this study, a individualized sensor mobile agent middleware which provides the individualized information (the location of fire incidence and the trace for the path of spread), has been realized through the sensor network environment constructed by the installation of wireless sensor nodes mounted with mobile agent middlewares in buildings.

A Period Adaptive Wakeup Technique based on Receive Prediction for WSN (무선 센서 네트워크를 위한 수신 예측 기반 주기 적응적 웨이크업 기법)

  • Lee, Kyung-Hoon;Lee, Hak-Jai;Kim, Young-Min
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.11
    • /
    • pp.1265-1270
    • /
    • 2015
  • For the sensor node or collection node operating with a battery in a wireless sensor network, MAC protocols with improved energy efficiency are important performance factors. In this paper, in order to improve the restrictive capability in accordance with the fixed activity period of the duty cycle technology in the MAC protocol for wireless sensor networks, we propose a periodic adaptive wakeup technique based on receive prediction. The proposed technique is through a performance evaluation using the CC2500 RF transceiver and C8051F330 microcontroller based wireless node, to analyze the minimum active period. As a result, it was confirmed that it is possible to improve energy efficiency by adaptively changing the sleep period in accordance with the change of period.

A study on the Implementation of Wireless Sensor Network for Wireless Home Networking (무선 홈네트웤을 위한 WSN에 관한 연구)

  • Jeon, Dong-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.6
    • /
    • pp.1337-1342
    • /
    • 2012
  • In recent years, many researches in Home Networking are being progressed actively. Most of techniques for Home Networking are based on wired but the technique for wireless connection is also needed. This paper focuses on wireless connection in Home Networking. Of many of wireless technologies, such as Wireless LAN, Bluetooth, or HomeRF, we especially propose to apply the new technique called Wireless Sensor Network. We present hardware and protocol stack design consideration for wireless sensor node and wireless sensor network, and then we present how to apply wireless sensor network to Home Networking and how to constitute Wireless Home-Networking with a variety of sensor nodes. Finally, we introduce the wireless sensor node system designed by us and conclude this paper.

A Load Balanced Clustering Model for Energy Efficient Packet Transmission in Wireless Sensor Networks (무선 센서 네트워크에서 에너지 효율적 패킷 전송을 위한 부하 균형 클러스터링 모델)

  • Lee, Jae-Hee;Kim, Byung-Ki;Kang, Seong-Ho
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.12
    • /
    • pp.409-414
    • /
    • 2015
  • The energy conservation is the most important subject for long run operation of the sensor nodes with limited power resources. Clustering is one of most energy efficient technique to grouped the sensor nodes into distinct cluster. But, in a cluster based WSN, CHs and gateways bear an extra work load to send the processed data to the sink. The inappropriate cluster formation may cause gateways overloaded and may increase latency in communication. In this paper, we propose a novel load balanced clustering model for improving energy efficiency and giving a guarantee of long network lifetime. We show the result of performance measurement experiments that designs using a branch and bound algorithm and a multi-start local search algorithm to compare with the existing load balanced clustering model.

Enhancing the Quality of Service by GBSO Splay Tree Routing Framework in Wireless Sensor Network

  • Majidha Fathima K. M.;M. Suganthi;N. Santhiyakumari
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.2188-2208
    • /
    • 2023
  • Quality of Service (QoS) is a critical feature of Wireless Sensor Networks (WSNs) with routing algorithms. Data packets are moved between cluster heads with QoS using a number of energy-efficient routing techniques. However, sustaining high scalability while increasing the life of a WSN's networks scenario remains a challenging task. Thus, this research aims to develop an energy-balancing component that ensures equal energy consumption for all network sensors while offering flexible routing without congestion, even at peak hours. This research work proposes a Gravitational Blackhole Search Optimised splay tree routing framework. Based on the splay tree topology, the routing procedure is carried out by the suggested method using three distinct steps. Initially, the proposed GBSO decides the optimal route at initiation phases by choosing the root node with optimum energy in the splay tree. In the selection stage, the steps for energy update and trust update are completed by evaluating a novel reliance function utilising the Parent Reliance (PR) and Grand Parent Reliance (GPR). Finally, in the routing phase, using the fitness measure and the minimal distance, the GBSO algorithm determines the best route for data broadcast. The model results demonstrated the efficacy of the suggested technique with 99.52% packet delivery ratio, a minimum delay of 0.19 s, and a network lifetime of 1750 rounds with 200 nodes. Also, the comparative analysis ensured that the suggested algorithm surpasses the effectiveness of the existing algorithm in all aspects and guaranteed end-to-end delivery of packets.

A Moving Path Control of an Automatic Guided Vehicle Using Relative Distance Fingerprinting (상대거리 지문 정보를 이용한 무인이송차량의 주행 경로 제어)

  • Hong, Youn Sik;Kim, Da Jung;Hong, Sang Hyun
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.10
    • /
    • pp.427-436
    • /
    • 2013
  • In this paper, a method of moving path control of an automatic guided vehicle in an indoor environment through recognition of marker images using vision sensors is presented. The existing AGV moving control system using infrared-ray sensors and landmarks have faced at two critical problems. Since there are many windows in a crematorium, they are going to let in too much sunlight in the main hall which is the moving area of AGVs. Sunlight affects the correct recognition of landmarks due to refraction and/or reflection of sunlight. The second one is that a crematorium has a narrow indoor environment compared to typical industrial fields. Particularly when an AVG changes its direction to enter the designated furnace the information provided by guided sensors cannot be utilized to estimate its location because the rotating space is too narrow to get them. To resolve the occurrences of such circumstances that cannot access sensing data in a WSN environment, a relative distance from marker to an AGV will be used as fingerprinting used for location estimation. Compared to the existing fingerprinting method which uses RSS, our proposed method may result in a higher reliable estimation of location. Our experimental results show that the proposed method proves the correctness and applicability. In addition, our proposed approach will be applied to the AGV system in the crematorium so that it can transport a dead body safely from the loading place to its rightful destination.

The Algorithm for an Energy-efficient Particle Sensor Applied LEACH Routing Protocol in Wireless Sensor Networks (무선센서네트워크에서 LEACH 라우팅 프로토콜을 적용한 파티클 센서의 에너지 효율적인 알고리즘)

  • Hong, Sung-Hwa;Kim, Hoon-Ki
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.3
    • /
    • pp.13-21
    • /
    • 2009
  • The sensor nodes that form a wireless sensor network must perform both routing and sensing roles, since each sensor node always has a regular energy drain. The majority of sensors being used in wireless sensor networks are either unmanned or operated in environments that make them difficult for humans to approach. Furthermore, since many wireless sensor networks contain large numbers of sensors, thus requiring the sensor nodes to be small in size and cheap in price, the amount of power that can be supplied to the nodes and their data processing capacity are both limited. In this paper, we proposes the WSN(Wireless Sensor Network) algorithm which is applied sensor node that has low power consumption and efficiency measurement. Moreover, the efficiency routing protocol is proposed in this paper. The proposed algorithm reduces power consumption of sensor node data communication. It has not researched in LEACH(Low-Energy Adaptive Clustering Hierarchy) routing protocol. As controlling the active/sleep mode based on the measured data by sensor node, the energy consumption is able to be managed. In the event, the data is transferred to the local cluster head already set. The other side, this algorithm send the data as dependent on the information such as initial and present energy, and the number of rounds that are transformed into cluster header and then transferred. In this situation, the assignment of each node to cluster head evenly is very important. We selected cluster head efficiently and uniformly distributed the energy to each cluster node through the proposed algorithm. Consequently, this caused the extension of the WSN life time.

A 2MC-based Framework for Sensor Data Loss Decrease in Wireless Sensor Network Failures (무선센서네트워크 장애에서 센서 데이터 손실 감소를 위한 2MC기반 프레임워크)

  • Shin, DongHyun;Kim, Changhwa
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.2
    • /
    • pp.31-40
    • /
    • 2016
  • Wireless sensor networks have been used in many applications such as marine environment, army installation, etc. The sensor data is very important, because all these applications depend on sensor data. The possibility of communication failures becomes high since the surrounding environment of a wireless sense network has an sensitive effect on its communications. In particular, communication failures in underwater communications occur more frequently because of a narrow bandwidth, slow transmission speed, noises from the surrounding environments and so on. In cases of communication failures, the sensor data can be lost in the sensor data delivery process and these kinds of sensor data losses can make critical huge physical damages on human or environments in applications such as fire surveillance systems. For this reason, although a few of studies for storing and compressing sensor data have been proposed, there are lots of difficulties in actual realization of the studies due to none-existence of the framework using network communications. In this paper, we propose a framework for reducing loss of the sensor data and analyze its performance. The our analyzed results in non-framework application show a decreasing data recovery rate, T/t, as t time passes after a network failure, where T is a time period to fill the storage with sensor data after the network failure. Moreover, all the sensor data generated after a network failure are the errors impossible to recover. But, on the other hand, the analyzed results in framework application show 100% data recovery rate with 2~6% data error rate after data recovery.

Beacon Node Based Localization Algorithm Using Received Signal Strength(RSS) and Path Loss Calibration for Wireless Sensor Networks (무선 센서 네트워크에서 수신신호세기와 전력손실지수 추정을 활용하는 비콘 노드 기반의 위치 추정 기법)

  • Kang, Hyung-Seo;Koo, In-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.1
    • /
    • pp.15-21
    • /
    • 2011
  • In the range-based localization, the localization accuracy will be high dependent on the accuracy of distance measurement between two nodes. The received signal strength(RSS) is one of the simplest methods of distance measurement, and can be easily implemented in a ranging-based method. However, a RSS-based localization scheme has few problems. One problem is that the signal in the communication channel is affected by many factors such as fading, shadowing, obstacle, and etc, which makes the error of distance measurement occur and the localization accuracy of sensor node be low. The other problem is that the sensor node estimates its location for itself in most cases of the RSS-based localization schemes, which makes the sensor network life time be reduced due to the battery limit of sensor nodes. Since beacon nodes usually have more resources than sensor nodes in terms of computation ability and battery, the beacon node based localization scheme can expand the life time of the sensor network. In this paper, therefore we propose a beacon node based localization algorithm using received signal strength(RSS) and path loss calibration in order to overcome the aforementioned problems. Through simulations, we prove the efficiency of the proposed scheme.

A Periodical Key Refreshment Scheme for Compromise-prone Sensor Nodes (오염에 취약한 센서노드들을 위한 주기적인 키갱신 방안)

  • Wang, Gi-Cheol;Kim, Ki-Young;Park, Won-Ju;Cho, Gi-Hwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.11
    • /
    • pp.67-77
    • /
    • 2007
  • In sensor networks, it is very important to refresh communication keys of sensors in a periodic or on-demand manner. To perform a dynamic key management efficiently, sensor networks usually employ cluster architecture and each CH (Cluster Head) is responsible for key management within its cluster. In cluster-based sensor networks, CHs are likely to be targets of capture attacks, and capture of CHs threatens the survival of network significantly. In this paper, we propose a periodical key refreshment scheme which counteracts against capture of CHs. First, the proposed scheme reduces the threat caused by compromise of CHs by forcing each CH to manage a small number of sensors and changing CH role nodes periodically. Second, the proposed scheme flings attackers into confusion by involving other nodes in a key establishment between BS (Base Station) and a CH. Our numerical analyses showed that the proposed scheme is more secure than other schemes and robust against compromise of CHs.