• Title/Summary/Keyword: WPT(Wireless power transfer)

Search Result 138, Processing Time 0.03 seconds

Omnidirectionally Beam-Steerable Orthogonal Loop Resonator with Switch for Wireless Power Transfer (무선전력전송용 스위치가 장착된 직교루프 전방향 빔조향 공진기)

  • Choi, Bo-Hee;Lee, Jeong-Hae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.3
    • /
    • pp.300-304
    • /
    • 2015
  • This paper presents an omnidirectionally beam-steerable orthogonal loop resonator for wireless power transfer. The resonator is composed of two orthogonal loops. These connections of two loops and the current direction on the loops are determined by the control of switch. The magnetic field direction is determined by the vector sum of each loop current. The beam is steerable to eight directions by four switch modes. Using the suitable switch mode, the simulation and measurement efficiencies in the whole azimuthal direction are 56.3~60.0 %(deviation 3.7 %) and 41.2~48.7 %(deviation 7.5 %), respectively. The results show a little variation of transmission efficiency in the azimuthal direction.

High Gain and High Efficiency Class-E Power Amplifier Using Controlling Drain Bias for WPT (드레인 조절회로를 이용한 무선전력전송용 고이득 고효율 Class-E 전력증폭기 설계)

  • Kim, Sanghwan;Seo, Chulhun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.41-45
    • /
    • 2014
  • In this paper, a high-efficiency power amplifier is implemented by using a drain bias control circuit operated at low input power for WPT(Wireless Power Transfer). Adaptive bias control circuit was added to high-efficiency class-E amplifier. It was possible to obtain the overall improvement in efficiency by adjusting the drain bias at low input power. The proposed adaptive class-E amplifier is implemented by using the input and output matching network and serial resonant circuit for improvement in efficiency. Drain bias control circuit consists of a directional coupler, power detector, and operational amplifier for adjusting the drain bias according to the input power. The measured results show that output powers of 41.83 dBm were obtained at 13.56 MHz. At this frequency, we have obtained the power added efficiency(PAE) of 85.67 %. It was confirmed increase of PAE of an average of 8 % than the fixed bias from the low input power level of 0 dBm ~ 6 dBm.

High Efficiency Rectenna for Wireless Power Transmission Using Harmonic Suppressed Dual-mode Band-pass Filter (고조파 억압 이중모드 대역통과 여파기를 이용한 2.45 GHz 고효율 렉테나 설계)

  • Hong, Tae-Ui;Jeon, Bong-Wook;Lee, Hyun-Wook;Yun, Tae-Soon;Kang, Yong-Cheol;Lee, Jong-Chul
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.6
    • /
    • pp.64-72
    • /
    • 2009
  • In this paper, a high efficiency 2.45 GHz rectenna with a microstrip patch antenna and a dual-mode band-pass filter in which the 2nd and 3rd harmonics are suppressed, is presented. From the experimental results, the 2.45GHz rectenna using 3rd harmonic suppressed dual-mode BPF shows the conversion efficiency of 41.6% with incident power density of 0.3 mW/cm2 and the received power of 1.66 mW. This result shows high conversion efficiency because the received power of this rectenna is lower than other rectennas to be compared with. This rectenna can be applied to the WPT (Wireless Power Transmission) field for energy harvesting. Also, it is expected to be used to provide the stand-by power for the low power devices for USN, and wireless power transfer in sensor application of MEMS devices.

  • PDF

Analysis of Shielding Characteristics for Induction Phenomenon Attenuation of Large Capacity Wireless Power Transmission Environment (대용량 무선전력전송 환경 유도현상 감쇄를 위한 차폐 특성 분석)

  • Chae, Dong-Ju;Kim, Young-Seok;Jung, Jin-Soo;Lim, Hyun-Sung;Cho, Sung-Koo;Hong, Seong-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1844-1851
    • /
    • 2017
  • As the capacity of the wireless power transmission increases, a higher supply current which may induce current in nearby conductive parts requires. Induced current may affect electric shock to the human body and malfunction of the electrical equipment. In order to prevent such induced phenomena as a risk factor, shielding is required between the source of the wireless power transmission and the conductive parts. The resonance frequency for the large capacity wireless power transmission has the wavelength of several hundred meters, so most environments are included in the near-field area. By wave impedance, the electric field has higher density in the near-field area and needs to be analyze for protecting. For this purpose, it is necessary to select a substance having a larger electric conductivity and optimized shielding structure. In this paper, an aluminum base shielding structure was presented to conduct experiments on thickness, position, and heat dissipation. In the 35 kW, 60 kHz environments, the optimized 5T Al base shielding structure attenuates the induced current to 43 %.

Reduction of Leakage Magnetic Fields in Low Frequency WPT System Using Soft Magnetic Materials (연자성체를 이용한 저주파 무선전력전송 시스템의 누설 자기장 저감)

  • Lee, In-Gon;Kim, Nam;Cho, In-Kui;Hong, Ic-Pyo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.1
    • /
    • pp.76-79
    • /
    • 2017
  • This paper presents the electromagnetic shielding structure for low frequency wireless power transfer system with magnetic induction method using soft magnetic materials. Soft magnetic materials have advantages such as high permeability and low magnetic loss, but have undesirable effect of power loss by eddy current. To overcome this, we proposed the patterned soft magnetic material to suppress the eddy current path. For validity of this paper, we simulated the coil transfer efficiency and the radiated electromagnetic field, and fabricated the proposed structure using 79-permalloy. The measured results shows good agreements with the simulated results and reduction of the radiated electromagnetic field compared to commercial ferrite plate.

Characteristic Analysis of Efficiency and Impedance With WPT Transmitter and Receiver Coil Distance (무선전력전송 송수신코일 거리에 따른 효율 및 임피던스 특성 해석)

  • Park, Dae Kil;Kim, Young Hyun;Koo, Kyung Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.3
    • /
    • pp.160-165
    • /
    • 2022
  • In this paper, we have proposed a magnetic resonant 6.78MHz WPT(wireless power transfer) technique which can be applied to a fixed transmitter and a receiver of varying relative distance and coil alignment, Power transmission characteristics are studied with the relative distance and misalignment ration of coil area between the transmitting and receiving coils. The coils are designed with the size of 60×80mm2 by direct feeding method, and the characteristics are derived with the maximum relative distance of 50mm and horizontal area misalignment state of 0-40mm misalignment of coil center axis in the XY plane. The power transmission characteristics are compared between the 3D EM simulation and the measured data, and the power transmission shows larger than -3dB performance with the vertical distance of up to 30mm and 50% area misalignmment ratio. This work showsthe transmission characteristics according to relative distance and misalignment state between the cols and that direct feeding has advantage for the short relative distance and small misalignment ratio.

Development of 2W-Level Wireless Powered Energy Harvesting Receiver using 60Hz power line in Electricity Cable Tunnel (전력구 내 지중선을 이용한 2W급 상용주파수 무선전력 수신장치 개발)

  • Jang, Gi-Chan;Choi, Bo-Hwan;Rim, Chun-Taek
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.4
    • /
    • pp.296-301
    • /
    • 2016
  • Using high magnetic flux from a 60 Hz high-current cable, a 2 W wireless-powered energy harvesting receiver for sensor operation, internet of things (IoT) devices, and LED lights inside electrical cable tunnels is proposed. The proposed receiver comprises a copper coil with a high number of turns, a ring-shaped ferromagnetic core, a capacitor for compensating for the impedance of the coil in series, and a rectifier with various types of loads, such as sensors, IoT devices, and LEDs. To achieve safe and easy installation around the power cable, the proposed ring-shaped receiver is designed to easily open or close using a clothespin-shaped handle, which is made of highly-insulated plastic. Laminated silicon steel plates are assembled and used as the core because of their mechanical robustness and high saturation flux density characteristic, in which the thickness of each isolated plate is 0.3 mm. The series-connected resonant capacitor, which is appropriate for low-voltage applications, is used together with the proposed receiver coil. The concept of the figure of merit, which is the product weight and cost of both the silicon steel plate and the copper wire, is used for an optimized design; therefore, the weight of the fabricated receiver and the price of raw material is 750 gf and USD $2 each, respectively. The 2.2 W powering capability of the fabricated receiver was experimentally verified with a power cable current of $100A_{rms}$ at 60Hz.

Improved Degree of Freedom of Magnetic Induction Wireless Charging Coil Using Proposed Double Coil (이중코일을 이용한 자기유도 무선충전 코일의 자유도 개선)

  • Choi, Bo-Hee;Nam, Yong-Hyun;Chung, Habong;Lee, Jeong-Hae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.12
    • /
    • pp.907-914
    • /
    • 2018
  • Wireless charging has been actively researched and popularized owing to the potential convenience of being able to charge electronic devices without wires for users. However, the receiver on the wireless charging pad is not charged when the center of the receiver is misaligned; thus, the center of the receiver must be adjusted well. This misalignment may greatly reduce the convenience of wireless charging. To overcome this limitation of wireless charging, a coil is designed to improve the positional freedom of the receiver. The positional freedom of the Rx coil is improved when the outer diameter of Tx coil is larger than when Rx and Tx coils are almost the same size. When the Tx coil has a larger outer diameter than that of the Rx coil, the efficiency at the center is somewhat lowered, but the efficiency is improved compared to when the center is out of order. In this paper, a double coil structure having an outer and an inner coil is proposed. The double coil structure further improves the efficiency, compared with one coil with the same outer size. The simulation and measurement results demonstrated that the tendency was consistent, and it was verified that the degree of freedom of the Rx coil is improved by adding the inner coil, while the size of the outer coil was the same. The measurement shows that the transmission efficiency of the conventional Tx coil is 37 %, the larger outer diameter coil is 45 %, and double coil is 47 % when the distance of the Tx/Rx coil is 3 mm, the misalignment is 15 mm and current flowing in the Rx coil is 1 A at an operating frequency of 105 to 210 kHz.