• 제목/요약/키워드: WPT(Wireless Power Transfer)

검색결과 135건 처리시간 0.022초

공 모양의 구조를 이용한 무선 전력 전송용 3차원 전 방향 공진기 (Omnidirectional Resonator in Three-Dimensional using a Globular Structure for Wireless Power Transfer)

  • 김동건;서철헌
    • 전자공학회논문지
    • /
    • 제53권1호
    • /
    • pp.22-26
    • /
    • 2016
  • 본 논문에서는 공 모양의 구조를 이용하여 공진형 무선 전력 전송용 송 수신기를 설계 및 구현하였다. 제안된 송신기의 코일을 공 모양으로 감음으로써 3차원의 공간으로 자계 에너지를 방사하도록 하였다. 송신기의 각각의 면을 나선 구조로 함으로써 높은 Q 값을 얻을 수 있도록 설계하였다. 이것은 기존의 무선 전력 전송 시스템에서 위치에 따라서 전송효율이 변하는 문제점을 해결하였다. 그리고 3차원에서의 공진형 무선 전력 전송을 가능하게 한다. 이때의 공진주파수는 6.78 MHz이며, 송 수신기 사이 거리가 200 mm일 때, 3차원 전 방향에서 40% 이상의 전송 효율을 얻을 수 있었다.

Efficiency evaluation and characteristics of receiver coil under different inserted resonance coils in wireless power charging system for MAGLEV

  • Chung, Yoon Do;Jeon, Haeryong
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제20권1호
    • /
    • pp.23-27
    • /
    • 2018
  • As the wireless power transfer (WPT) technology based on strongly resonance coupled method realizes large power charging without any wires through the air, there are advantages compared with the wired counterparts, such as convenient, safety and fearless transmission of power. From this reason, the WPT systems have started to be applied to the wireless charging for various power applications such as train, underwater ship, electric vehicle. This study aims for the effect and characteristics of different inserted resonance coil between Tx and Rx coils for charging system of superconducting magnetic levitation (MAGLEV) train. The transfer efficiency and effect are evaluated with helix type, rectangular type copper resonance coil, and HTS resonance coil under bulb and HTS magnet load, respectively. The input power is adapted with radio frequency (RF) power of 370 kHz below 500 W.

WPT 시스템의 누설자계 감소를 위한 전자파 차폐구조 개선 (Improvement of Electromagnetic Shielding Structure for Reduction of the Leakage Magnetic Field in WPT System)

  • 김종찬;이승우;강병남;홍익표;조인귀;김남
    • 한국전자파학회논문지
    • /
    • 제28권1호
    • /
    • pp.61-68
    • /
    • 2017
  • 본 논문에서는 저주파 대역에서 동작하는 무선전력전송 시스템에서 발생하는 자기장을 저감하기 위한 개선된 자기장 저감 구조를 제안하였다. 제안된 구조는 자성체와 도체로 구성되었으며, 적용된 다양한 설계 파라미터를 최적화하여 전력전송을 위한 자기장의 상쇄효과는 최소화 하면서 시스템 주변으로 누설되는 자기장 상쇄효과는 개선되도록 하였다. 무선전력전송 시스템의 효율과 주변으로 누설되는 자기장 저감 효과를 컴퓨터 시뮬레이션과 측정을 통하여 분석 및 검증을 하였다. 시뮬레이션 분석 결과, 제안된 구조가 적용된 무선전력전송 시스템의 전력전송효율은 약 77 % 수준으로 기존의 전력전송효율과 동등한 수준을 유지하였다. 또한, 고효율을 유지하는 구조들과 비교하여 최대 근접지점에서 누설되는 자기장의 세기를 약 29~37 % 저감할 수 있었다.

Double-Loop Coil Design for Wireless Power Transfer to Embedded Sensors on Spindles

  • Chen, Suiyu;Yang, Yongmin;Luo, Yanting
    • Journal of Power Electronics
    • /
    • 제19권2호
    • /
    • pp.602-611
    • /
    • 2019
  • The major drawbacks of magnetic resonant coupled wireless power transfer (WPT) to the embedded sensors on spindles are transmission instability and low efficiency of the transmission. This paper proposes a novel double-loop coil design for wirelessly charging embedded sensors. Theoretical and finite-element analyses show that the proposed coil has good transmission performance. In addition, the power transmission capability of the double-loop coil can be improved by reducing the radius difference and width difference of the transmitter and receiver. It has been demonstrated by analysis and practical experiments that a magnetic resonant coupled WPT system using the double-loop coil can provide a stable and efficient power transmission to embedded sensors.

Three-coil Magnetically Coupled Resonant Wireless Power Transfer System with Adjustable-position Intermediate Coil for Stable Transmission Characteristics

  • Chen, Xuling;Chen, Lu;Ye, Weiwei;Zhang, Weipeng
    • Journal of Power Electronics
    • /
    • 제19권1호
    • /
    • pp.211-219
    • /
    • 2019
  • In magnetically coupled resonant (MCR) wireless power transfer (WPT) systems, the introduction of additional intermediate coils is an effective means of improving transmission characteristics, including output power and transmission efficiency, when the transmission distance is increased. However, the position of intermediate coils in practice influences system performance significantly. In this research, a three-coil MCR WPT system is adopted as an exemplification for determining how the spatial position of coils affects transmission characteristics. With use of the fundamental harmonic analysis method, an equivalent circuit model of the system is built to reveal the relationship between the output power, the transmission efficiency, and the spatial scales, including the axial, lateral, and angular misalignments of the intermediate and receiving coils. Three cases of transmission characteristics versus different spatial scales are evaluated. Results indicate that the system can achieve relatively stable transmission characteristics with deliberate adjustments in the position of the intermediate and receiving coils. A prototype of the three-coil MCR WPT system is built and analyzed, and the experimental results are consistent with those of the theoretical analysis.

Magnetic Resonant Wireless Power Transfer with L-Shape Arranged Resonators for Laptop Computer

  • Choi, Jung Han;Kang, Seok Hyon;Jung, Chang Won
    • Journal of electromagnetic engineering and science
    • /
    • 제17권3호
    • /
    • pp.126-132
    • /
    • 2017
  • In this study, we designed, measured, and analyzed a rearranged L-shape magnetic resonance coupling wireless power transfer (MR-WPT) system for practical applications with laptops. The typical four resonator MR-WPT (Tx part: source loop and Tx coil; Rx part: Rx coil and load loop) is difficult to apply to small-sized stationary and mobile applications, such as laptop computers, tablet-PCs, and smartphones, owing to the large volume of the Rx part and the spatial restrictions of the Tx and Rx coils. Therefore, an L-shape structure, which is the orthogonal arrangement of the Tx and Rx parts, is proposed for indoor environment applications, such as at an L-shaped wall or desk. The relatively large Tx part and Rx coil can be installed in the wall and the desk, respectively, while the load loop is embedded in the small stationary or mobile devices. The transfer efficiency (TE) of the proposed system was measured according to the transfer distance (TD) and the misaligned locations of the load loop. In addition, we measured the TE in the active/non-active state and monitor-open/closed state of the laptop computer. The overall highest TE of the L-shape MR-WPT was 61.43% at 45 cm TD, and the TE decreased to 27.9% in the active and monitor-open state of the laptop computer. The conductive ground plane has a much higher impact on the performance when compared to the impact of the active/non-active states. We verified the characteristics and practical benefits of the proposed L-shape MR-WPT compared to the typical MR-WPT for applications to L-shaped corners.

Bi-Directional Wireless Power Transfer for Vehicle-to-Grid Systems

  • Sun, Yue;Jiang, Cheng;Wang, Zhihui;Xiang, Lijuan;Zhang, Huan
    • Journal of Power Electronics
    • /
    • 제18권4호
    • /
    • pp.1190-1200
    • /
    • 2018
  • A current sourced bi-directional wireless power transfer (WPT) system is proposed to solve the problems that exist in the bi-directional WPT for vehicle-to-grid (V2G) systems. These problems include the fact that these systems are not safe enough, the output power is limited and the control methods are complicated. Firstly, the proposed system adopts two different compensation and control methods on both the primary and secondary sides. Secondly, based on an AC impedance analysis, the working principle is analyzed and the parameter configuration method with frequency stability is given. In order to output a constant voltage, a bi-directional DC/DC circuit and a controllable rectifier bridge are adopted, which are based on the "constant primary current, constant secondary voltage" control strategy. Finally, the effectiveness and feasibility of the proposed methods are verified by experimental results.

Evaluation of AC Resistance in Litz Wire Planar Spiral Coils for Wireless Power Transfer

  • Wang, Xiaona;Sun, Pan;Deng, Qijun;Wang, Wengbin
    • Journal of Power Electronics
    • /
    • 제18권4호
    • /
    • pp.1268-1277
    • /
    • 2018
  • A relatively high operating frequency is required for efficient wireless power transfer (WPT). However, the alternating current (AC) resistance of coils increases sharply with operating frequency, which possibly degrades overall efficiency. Hence, the evaluation of coil AC resistance is critical in selecting operating frequency to achieve good efficiency. For a Litz wire coil, AC resistance is attributed to the magnetic field, which leads to the skin effect, the proximity effect, and the corresponding conductive resistance and inductive resistance in the coil. A numerical calculation method based on the Biot-Savart law is proposed to calculate magnetic field strength over strands in Litz wire planar spiral coils to evaluate their AC resistance. An optimized frequency can be found to achieve the maximum efficiency of a WPT system based on the predicted resistance. Sample coils are manufactured to verify the resistance analysis method. A prototype WPT system is set up to conduct the experiments. The experiments show that the proposed method can accurately predict the AC resistance of Litz wire planar spiral coils and the optimized operating frequency for maximum efficiency.

Reduction of Electromagnetic Field from Wireless Power Transfer Using a Series-Parallel Resonance Circuit Topology

  • Kim, Jong-Hoon;Kim, Hong-Seok;Kim, In-Myoung;Kim, Young-Il;Ahn, Seung-Young;Kim, Ji-Seong;Kim, Joung-Ho
    • Journal of electromagnetic engineering and science
    • /
    • 제11권3호
    • /
    • pp.166-173
    • /
    • 2011
  • In this paper, we implemented and analyzed a wireless power transfer (WPT) system with a CSPR topology. CSPR refers to constant current source, series resonance circuit topology of a transmitting coil, parallel resonance circuit topology of a receiving coil, and pure resistive loading. The transmitting coil is coupled by a magnetic field to the receiving coil without wire. Although the electromotive force (emf) is small (about 4.5V), the voltage on load resistor is 148V, because a parallel resonance scheme was adopted for the receiving coil. The implemented WPT system is designed to be able to transfer up to 1 kW power and can operate a LED TV. Before the implementation, the EMF reduction mechanism based on the use of ferrite and a metal shield box was confirmed by an EM simulation and we found that the EMF can be suppressed dramatically by using this shield. The operating frequency of the implemented WPT system is 30.7kHz and the air gap between two coils is 150mm. The power transferred to the load resistor is 147W and the real power transfer efficiency is 66.4 %.

Modeling and Design of Zero-Voltage-Switching Controller for Wireless Power Transfer Systems Based on Closed-Loop Dominant Pole

  • Chen, Cheng;Zhou, Hong;Deng, Qijun;Hu, Wenshan;Yu, Yanjuan;Lu, Xiaoqing;Lai, Jingang
    • Journal of Power Electronics
    • /
    • 제19권5호
    • /
    • pp.1235-1247
    • /
    • 2019
  • Zero-Voltage-Switching (ZVS) operation for a Wireless Power Transfer (WPT) system can be achieved by designing a ZVS controller. However, the performance of the controller in some industrial applications needs to be designed tightly. This paper introduces a ZVS controller design method for WPT systems. The parameters of the controller are designed according to the desired performance based on the closed loop dominant pole placement method. To describe the dynamic characteristics of the system ZVS angle, a nonlinear dynamic model is deduced and linearized using the small signal linearization method. By analyzing the zero-pole distribution, a low-order equivalent model that facilitates the controller design is obtained. The parameters of the controller are designed by calculating the time constant of the closed-loop dominant poles. A prototype of a WPT system with the designed controller and a five-stage multistage series variable capacitor (MSVC) is built and tested to verify the performance of the controller. The recorded response curves and waveforms show that the designed controller can maintain the ZVS angle at the reference angle with satisfactory control performance.