In recent years, as many people post their interests on social media or store documents in digital form due to the development of the internet and computer technologies, the amount of text data generated has exploded. Accordingly, the demand for technology to create valuable information from numerous document data is also increasing. In this study, through statistical techniques, we investigate how the meanings of Korean words change over time by using the presidential speech records and newspaper articles public data. Using this, we present a strategy that can be utilized in the study of the synchronic change of Hangeul. The purpose of this study is to deviate from the study of the theoretical language phenomenon of Hangeul, which was studied by the intuition of existing linguists or native speakers, to derive numerical values through public documents that can be used by anyone, and to explain the phenomenon of changes in the meaning of words.
Park, JinGyu;Kim, HwaYeon;Kim, Hyoung-Geun;Ahn, Tae-Ki;Yi, Hyunbean
Journal of the Korea Society of Computer and Information
/
v.23
no.7
/
pp.19-26
/
2018
This paper presents a structuring process of unstructured social network service (SNS) messages on rail services. We crawl messages about rail services posted on SNS and extract keywords indicating date and time, rail operating company, station name, direction, and rail service types from each message. Among them, the rail service types are classified by machine learning according to predefined rail service types, and the rest are extracted by regular expressions. Words are converted into vector representations using Word2Vec and a conventional Convolutional Neural Network (CNN) is used for training and classification. For performance measurement, our experimental results show a comparison with a TF-IDF and Support Vector Machine (SVM) approach. This structured information in the database and can be easily used for services for railway users.
Yang, Yu-Jeong;Lee, Bo-Hyun;Kim, Jin-Sil;Lee, Ki Yong
Annual Conference of KIPS
/
2018.10a
/
pp.729-732
/
2018
모바일 게임 산업의 발달로 많은 사용자들이 게임을 이용하면서, 그들의 만족감을 사용리뷰를 통해 드러낸다. 실제로 각 리뷰의 범주가 모두 다르지만 현재 구글 플레이 앱스토어(Google Play App Store)의 게임 리뷰 범주는 3가지로 매우 제한적이다. 따라서 본 연구에서는 빠르고 정확한 고객의 요구를 필요로 하는 게임 소프트웨어의 특성을 고려하여 게임 리뷰를 입력했을 때, 게임의 운영 및 시스템에 맞도록 리뷰의 카테고리를 세분화하고 만족도를 분석하는 시스템을 개발한다. 제안 시스템은 인공신경망 모델인 CNN을 평점을 기반으로 훈련시켜 리뷰에 대한 만족도를 도출한다. 또한 Word2Vec을 이용해 단어들 간의 유사도를 구하고, 이를 활용한 단어 배열을 이용하여 가장 스코어가 높은 카테고리로 배정한다. 본 논문은 제안한 리뷰 만족도 및 카테고리 분류 시스템이 실제 효과적으로 리뷰를 보다 의미 있는 정보로써 제공할 수 있음을 보인다.
To address the problems of low precision rate, insufficient feature extraction, and poor contextual ability in existing text sentiment analysis methods, a mixed model account of a CNN-BiLSTM-TE (convolutional neural network, bidirectional long short-term memory, and topic extraction) model was proposed. First, Chinese text data was converted into vectors through the method of transfer learning by Word2Vec. Second, local features were extracted by the CNN model. Then, contextual information was extracted by the BiLSTM neural network and the emotional tendency was obtained using softmax. Finally, topics were extracted by the term frequency-inverse document frequency and K-means. Compared with the CNN, BiLSTM, and gate recurrent unit (GRU) models, the CNN-BiLSTM-TE model's F1-score was higher than other models by 0.0147, 0.006, and 0.0052, respectively. Then compared with CNN-LSTM, LSTM-CNN, and BiLSTM-CNN models, the F1-score was higher by 0.0071, 0.0038, and 0.0049, respectively. Experimental results showed that the CNN-BiLSTM-TE model can effectively improve various indicators in application. Lastly, performed scalability verification through a takeaway dataset, which has great value in practical applications.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.15
no.5
/
pp.1891-1908
/
2021
Cyber deception defense mitigates Advanced Persistent Threats (APTs) with deploying deceptive entities, such as the Honeyfile. The Honeyfile distracts attackers from valuable digital documents and attracts unauthorized access by deliberately exposing fake content. The effectiveness of distraction and trap lies in the enticement of fake content. However, existing studies on the Honeyfile focus less on this perspective. In this work, we seek to improve the enticement of fake text content through enhancing its readability, indistinguishability, and believability. Hence, an enticing deceptive-content generator, EDGE, is presented. The EDGE is constructed with three steps: extracting key concepts with a semantics-aware K-means clustering algorithm, searching for candidate deceptive concepts within the Word2Vec model, and generating deceptive text content under the Integrated Readability Index (IR). Furthermore, the readability and believability performance analyses are undertaken. The experimental results show that EDGE generates indistinguishable deceptive text content without decreasing readability. In all, EDGE proves effective to generate enticing deceptive text content as deception defense against APTs.
Artificial intelligence is a core technology in the era of digital transformation, and as the technology level is advanced and used in various industries, its influence is growing in various fields, including social, ethical and legal issues. Therefore, it is time to raise social awareness on ethics of artificial intelligence as a prevention measure as well as improvement of laws and institutional systems related to artificial intelligence development. In this study, we analyzed unstructured data, typically text, such as online news articles and comments to confirm the degree of social awareness on ethics of artificial intelligence development. The analysis showed that the public intended to concentrate on specific issues such as "Human," "Robot," and "President" in 2018 to 2019, while the public has been interested in the use of personal information and gender conflics in 2020 to 2021.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2022.05a
/
pp.259-261
/
2022
Recently, malicious code is not a single technique, but several techniques are combined and merged, and only important parts are extracted. As new malicious codes are created and transformed, attack patterns are gradually diversified and attack targets are also diversifying. In particular, the number of damage cases caused by malicious actions in corporate security is increasing over time. However, even if attackers combine several malicious codes, the APIs for each type of malicious code are repeatedly used and there is a high possibility that the patterns and names of the APIs are similar. For this reason, this paper proposes a classification technique that finds patterns of APIs frequently used in malicious code, calculates the meaning and similarity of APIs, and determines the level of risk.
소프트웨어 개발 환경이 빠르게 변화함에 따라 시스템의 복잡성이 증가하고 있다. 이에 따라 크고 작은 소프트웨어의 버그를 피할 수 없게 되며 이를 효율적으로 처리하기 위해 Bug report 를 사용한다. 하지만, Bug report 에서 개발자가 해당 Bug report 의 우선순위를 결정하는 과정은 노력과 비용 그리고 시간을 많이 소모하게 만든다. 따라서, 본 논문에서는 Bug report 내의 Stack trace 를 기반으로 Bug 의 우선순위를 자동적으로 추천하는 기법을 제안한다. 이를 위해 본 연구에서는 첫 번째로 Bug report 로부터 Stack trace 를 추출하였으며 Stack trace 의 3 가지 요소(Exception, Reason 그리고 Stack frame)에 TF-IDF, Word2Vec 그리고 Stack overflow 를 사용하여 특징 벡터를 정의하였다. 그리고 Bug 의 우선순위 추천 모델을 생성하기 위해 4 가지의 Classification 알고리즘을(Random Forest, Decision Tree, XGBoost, SVM)을 적용하였다. 평가에서는 266,292 개의 JDK library 의 Bug report 데이터를 수집하였고 그중 Stack trace 를 가진 Bug report 로부터 68%의 정확도를 산출하였다.
Park, Seo-Yoon;Kang, Ye-Jee;Kang, Hye-Rin;Jang, Yeon-Ji;Kim, Han-Saem
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.167-172
/
2021
관용표현 중에는 중의성을 가진 표현이 많다. 즉 하나의 표현이 맥락에 따라 일반적 의미와 관용적 의미 두 가지 이상으로 해석될 가능성이 있어 이런 유형의 관용표현을 중의성 해소 없이 자연어 처리 태스크에 적용할 경우 문제가 발생하게 된다. 본 연구에서는 관용표현의 특성인 중의성과 더불어 '관용표현은 이미 사용자의 머릿속에 하나의 토큰으로 저장되어 있다'라는 'Idiom Principle'을 바탕으로 관용표현에 대해 각각 표면형, 단순 단일 토큰형, stemming 단일 토큰형 층위의 임베딩을 만들어 관용표현 분류 연구를 진행하였으며, 실험 결과 표면형 및 stemming을 적용하지 않은 단순 단일 토큰으로 학습하는 것보다, stemming을 적용한 후 단일 토큰으로 학습하는 것이 관용표현의 중의성 해소에 유의미한 효과가 있음을 확인하였다.
대화 데이터 기반 광고 추천은 광고 마케팅에서 고객 맞춤형 광고 제공, 마케팅 효과 극대화 등을 위한 중요한 기술로 주목받고 있다. 본 논문에서는 모바일 인스턴스 메신저인 카카오톡 대화창에서 발생한 텍스트 데이터를 기반으로 대화 내용을 분석하여 대화 주제별 적절한 광고 키워드를 제안한다. 이를 위해 주제별 대화 내용을 미용, 식음료, 상거래로 세분하고 KoNLPy 의 Okt 를 이용하여 텍스트 전처리를 수행하고 키워드별로 빈도수를 뽑아 워드 클라우드를 제시한다. 또한, 잠재 디리클레 할당(Latent Dirichlet Allocation, LDA)을 기반으로 대화 주제를 세분화한 뒤 라벨링을 통해 주제별 대화 키워드를 분석한다. 실험 결과, 대화 주제를 온라인 쇼핑, 헤어, 뷰티 관리, 음식으로 나눌 수 있었으며, 토픽별 상위 키워드를 Word2Vec 을 통해 특정 단어와 유사한 키워드를 도출하여 적절한 광고 키워드를 제시할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.