• 제목/요약/키워드: WORD2VEC

검색결과 224건 처리시간 0.026초

Word2vec을 이용한 오피니언 마이닝 성과분석 연구 (Performance Analysis of Opinion Mining using Word2vec)

  • 어균선;이건창
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2018년도 춘계 종합학술대회 논문집
    • /
    • pp.7-8
    • /
    • 2018
  • 본 연구에서는 Word2vec을 머신러닝 분류기를 이용해 효율적인 오피니언 마이닝 방법을 제안한다. 본 연구의 목적을 위해 BOW(Bag-of-Words) 방법과 Word2vec방법을 이용해 속성 셋을 구성했다. 구성된 속성 셋은 Decision tree, Logistic regression, Support vector machine, Random forest를 이용해 오피니언 마이닝을 수행했다. 연구 결과, Word2vec 방법과 RF분류기가 가장 높은 정확도를 나타냈다. 그리고 Word2vec 방법이 BOW방법 보다 각 분류기에서 높은 성능을 나타냈다.

  • PDF

딥러닝과 Char2Vec을 이용한 문장 유사도 판별 (The Sentence Similarity Measure Using Deep-Learning and Char2Vec)

  • 임근영;조영복
    • 한국정보통신학회논문지
    • /
    • 제22권10호
    • /
    • pp.1300-1306
    • /
    • 2018
  • 본 연구는 자연어 처리 문제 중 하나인 문장 유사도 판별 문제를 딥러닝으로 해결하는 데에 있어 Char2Vec기반으로 문장을 전 처리하고 학습시켜 그 성능을 확인하고 대표적인 Word Embedding 모델 Word2Vec를 대체할 수 있는 가능성이 있는지 파악하고자 한다. 임의의 두 문장을 비교할 때 쓰는 딥러닝 구조로 Siamese Ma-STM 네트워크를 사용하였다. Word2Vec와 Char2Vec를 각각 기반으로 한 문장 유사도 판별 모델을 학습시키고 그 결과를 분석하였다. 실험 결과 Char2Vec를 기반으로 학습시킨 모델이 validation accuracy 75.1%을 보였고 Word2Vec를 기반으로 학습시킨 모델은 validation accuracy 71.6%를 보였다. 따라서 고 사양을 요구하는 Word2Vec대신 임베딩 레이어를 활용한 Char2Vec 기반의 전처리 모델을 활용함으로 분석 환경을 최적화 할 수 있다.

Doc2Vec을 활용한 CNN기반 한국어 신문기사 분류에 관한 연구 (A Study on Categorization of Korean News Article based on CNN using Doc2Vec)

  • 김도우;구명완
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2016년도 제28회 한글및한국어정보처리학술대회
    • /
    • pp.67-71
    • /
    • 2016
  • 본 논문에서는 word2vec과 doc2vec을 함께 CNN에 적용한 문서 분류 방안을 제안한다. 먼저 어절, 형태소, WPM(Word Piece Model)을 각각 사용하여 생성한 토큰(token)으로 doc2vec을 활용하여 문서를 vector로 표현한 후, 초보적인 문서 분류에 적용한 결과 WPM이 분류율 79.5%가 되어 3가지 방법 중 최고 성능을 보였다. 다음으로 CNN의 입력자질로써 WPM을 이용하여 생성한 토큰을 활용한 word2vec을 범주 10개의 문서 분류에 사용한 실험과 doc2vec을 함께 사용한 실험을 수행하였다. 실험 결과 word2vec만을 활용하였을 때 86.89%의 분류율을 얻었고, doc2vec을 함께 적용한 결과 89.51%의 분류율을 얻었다. 따라서 제안한 모델을 통해서 분류율이 2.62% 향상됨을 확인하였다.

  • PDF

Doc2Vec을 활용한 CNN기반 한국어 신문기사 분류에 관한 연구 (A Study on Categorization of Korean News Article based on CNN using Doc2Vec)

  • 김도우;구명완
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2016년도 제28회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.67-71
    • /
    • 2016
  • 본 논문에서는 word2vec과 doc2vec을 함께 CNN에 적용한 문서 분류 방안을 제안한다. 먼저 어절, 형태소, WPM(Word Piece Model)을 각각 사용하여 생성한 토큰(token)으로 doc2vec을 활용하여 문서를 vector로 표현한 후, 초보적인 문서 분류에 적용한 결과 WPM이 분류율 79.5%가 되어 3가지 방법 중 최고 성능을 보였다. 다음으로 CNN의 입력자질로써 WPM을 이용하여 생성한 토큰을 활용한 word2vec을 범주 10개의 문서 분류에 사용한 실험과 doc2vec을 함께 사용한 실험을 수행하였다. 실험 결과 word2vec만을 활용하였을 때 86.89%의 분류율을 얻었고, doc2vec을 함께 적용한 결과 89.51%의 분류율을 얻었다. 따라서 제안한 모델을 통해서 분류율이 2.62% 향상됨을 확인하였다.

  • PDF

Doc2Vec과 Word2Vec을 활용한 Convolutional Neural Network 기반 한국어 신문 기사 분류 (Categorization of Korean News Articles Based on Convolutional Neural Network Using Doc2Vec and Word2Vec)

  • 김도우;구명완
    • 정보과학회 논문지
    • /
    • 제44권7호
    • /
    • pp.742-747
    • /
    • 2017
  • 본 논문에서는 문장의 분류에 있어 성능이 입증된 word2vec을 활용한 Convolutional Neural Network(CNN) 모델을 기반으로 하여 문서 분류에 적용 시 성능을 향상시키기 위해 doc2vec을 함께 CNN에 적용하고 기반 모델의 구조를 개선한 문서 분류 방안을 제안한다. 먼저 토큰화 방법을 선정하기 위한 초보적인 실험을 통하여, 어절 단위, 형태소 분석, Word Piece Model(WPM) 적용의 3가지 방법 중 WPM이 분류율 79.5%를 산출하여 문서 분류에 유용함을 실증적으로 확인하였다. 다음으로 WPM을 활용하여 생성한 단어 및 문서의 벡터 표현을 기반 모델과 제안 모델에 입력하여 범주 10개의 한국어 신문 기사 분류에 적용한 실험을 수행하였다. 실험 결과, 제안 모델이 분류율 89.88%를 산출하여 기반 모델의 분류율 86.89%보다 2.99% 향상되고 22.80%의 개선 효과를 보였다. 본 연구를 통하여, doc2vec이 동일한 범주에 속한 문서들에 대하여 유사한 문서 벡터 표현을 생성하기 때문에 문서의 분류에 doc2vec을 함께 활용하는 것이 효과적임을 검증하였다.

Word2Vec 모델을 활용한 한국어 문장 생성 (Generating Korean Sentences Using Word2Vec)

  • 남현규;이영석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2017년도 제29회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.209-212
    • /
    • 2017
  • 고도화된 머신러닝과 딥러닝 기술은 영상처리, 자연어처리 등의 분야에서 많은 문제를 해결하고 있다. 특히 사용자가 입력한 문장을 분석하고 그에 따른 문장을 생성하는 자연어처리 기술은 기계 번역, 자동 요약, 자동 오류 수정 등에 널리 이용되고 있다. 딥러닝 기반의 자연어처리 기술은 학습을 위해 여러 계층의 신경망을 구성하여 단어 간 의존 관계와 문장 구조를 학습한다. 그러나 학습 과정에서의 계산양이 방대하여 모델을 구성하는데 시간과 비용이 많이 필요하다. 그러나 Word2Vec 모델은 신경망과 유사하게 학습하면서도 선형 구조를 가지고 있어 딥러닝 기반 자연어처리 기술에 비해 적은 시간 복잡도로 고차원의 단어 벡터를 계산할 수 있다. 따라서 본 논문에서는 Word2Vec 모델을 활용하여 한국어 문장을 생성하는 방법을 제시하였다. 본 논문에서는 지정된 문장 템플릿에 유사도가 높은 각 단어들을 적용하여 문장을 구성하는 Word2Vec 모델을 설계하였고, 서로 다른 학습 데이터로부터 생성된 문장을 평가하고 제안한 모델의 활용 방안을 제시하였다.

  • PDF

Word2Vec 모델을 활용한 한국어 문장 생성 (Generating Korean Sentences Using Word2Vec)

  • 남현규;이영석
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2017년도 제29회 한글및한국어정보처리학술대회
    • /
    • pp.209-212
    • /
    • 2017
  • 고도화된 머신러닝과 딥러닝 기술은 영상처리, 자연어처리 등의 분야에서 많은 문제를 해결하고 있다. 특히 사용자가 입력한 문장을 분석하고 그에 따른 문장을 생성하는 자연어처리 기술은 기계 번역, 자동 요약, 자동 오류 수정 등에 널리 이용되고 있다. 딥러닝 기반의 자연어처리 기술은 학습을 위해 여러 계층의 신경망을 구성하여 단어 간 의존 관계와 문장 구조를 학습한다. 그러나 학습 과정에서의 계산양이 방대하여 모델을 구성하는데 시간과 비용이 많이 필요하다. 그러나 Word2Vec 모델은 신경망과 유사하게 학습하면서도 선형 구조를 가지고 있어 딥러닝 기반 자연어처리 기술에 비해 적은 시간 복잡도로 고차원의 단어 벡터를 계산할 수 있다. 따라서 본 논문에서는 Word2Vec 모델을 활용하여 한국어 문장을 생성하는 방법을 제시하였다. 본 논문에서는 지정된 문장 템플릿에 유사도가 높은 각 단어들을 적용하여 문장을 구성하는 Word2Vec 모델을 설계하였고, 서로 다른 학습 데이터로부터 생성된 문장을 평가하고 제안한 모델의 활용 방안을 제시하였다.

  • PDF

Word2vec과 앙상블 분류기를 사용한 효율적 한국어 감성 분류 방안 (Effective Korean sentiment classification method using word2vec and ensemble classifier)

  • 박성수;이건창
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권1호
    • /
    • pp.133-140
    • /
    • 2018
  • 감성 분석에서 정확한 감성 분류는 중요한 연구 주제이다. 본 연구는 최근 많은 연구가 이루어지는 word2vec과 앙상블 방법을 이용하여 효과적으로 한국어 리뷰를 감성 분류하는 방법을 제시한다. 연구는 20 만 개의 한국 영화 리뷰 텍스트에 대해, 품사 기반 BOW 자질과 word2vec를 사용한 자질을 생성하고, 두 개의 자질 표현을 결합한 통합 자질을 생성했다. 감성 분류를 위해 Logistic Regression, Decision Tree, Naive Bayes, Support Vector Machine의 단일 분류기와 Adaptive Boost, Bagging, Gradient Boosting, Random Forest의 앙상블 분류기를 사용하였다. 연구 결과로 형용사와 부사를 포함한 BOW자질과 word2vec자질로 구성된 통합 자질 표현이 가장 높은 감성 분류 정확도를 보였다. 실증결과, 단일 분류기인 SVM이 가장 높은 성능을 나타내었지만, 앙상블 분류기는 단일 분류기와 비슷하거나 약간 낮은 성능을 보였다.

Word2Vec과 앙상블 합성곱 신경망을 활용한 영화추천 시스템의 정확도 개선에 관한 연구 (A Study on the Accuracy Improvement of Movie Recommender System Using Word2Vec and Ensemble Convolutional Neural Networks)

  • 강부식
    • 디지털융복합연구
    • /
    • 제17권1호
    • /
    • pp.123-130
    • /
    • 2019
  • 웹 추천기법에서 가장 많이 사용하는 방식 중의 하나는 협업필터링 기법이다. 협업필터링 관련 많은 연구에서 정확도를 개선하기 위한 방안이 제시되어 왔다. 본 연구는 Word2Vec과 앙상블 합성곱 신경망을 활용한 영화추천 방안에 대해 제안한다. 먼저 사용자, 영화, 평점 정보에서 사용자 문장과 영화 문장을 구성한다. 사용자 문장과 영화 문장을 Word2Vec에 입력으로 넣어 사용자 벡터와 영화 벡터를 구한다. 사용자 벡터는 사용자 합성곱 모델에 입력하고, 영화 벡터는 영화 합성곱 모델에 입력한다. 사용자 합성곱 모델과 영화 합성곱 모델은 완전연결 신경망 모델로 연결된다. 최종적으로 완전연결 신경망의 출력 계층은 사용자 영화 평점의 예측값을 출력한다. 실험결과 전통적인 협업필터링 기법과 유사 연구에서 제안한 Word2Vec과 심층 신경망을 사용한 기법에 비해 본 연구의 제안기법이 정확도를 개선함을 알 수 있었다.

학습률 향상을 위한 딥러닝 기반 맞춤형 문제 추천 알고리즘 (Deep learning-based custom problem recommendation algorithm to improve learning rate)

  • 임민아;황승연;김정준
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권5호
    • /
    • pp.171-176
    • /
    • 2022
  • 최근 딥러닝 기술의 발전과 함께 추천 시스템의 영역도 다양해졌다. 본 논문은 학습률 향상을 위한 알고리즘을 연구하였으며 Word2Vec 모델의 성능 특징과 비교를 통해 단어에 따른 유의어 결과를 연구하였다. 문제 추천 알고리즘은 Word2Vec 모델의 특징인 텍스트 간 의미 반영 및 유사성 테스트를 통해 표현된 값으로 구현됐다. Word2Vec 의 학습 결과를 통해 텍스트 유사도 값을 이용해 문제 추천을 진행하였으며 유사도가 높은 문제를 추천할 수 있다. 실험 과정에서 정량적인 데이터양으로는 정확성이 낮아지는 결과를 보았으며 데이터 셋의 데이터양이 방대할수록 정확성을 높일 수 있음을 확인하였다.