• Title/Summary/Keyword: WO$_3$

Search Result 723, Processing Time 0.044 seconds

Effect of SiC and WC additon on Oxidation Behavior of Spark-Plasma-Sintered ZrB2

  • Kim, Chang-Yeoul;Choi, Jae-Seok;Choi, Sung-Churl
    • Journal of Powder Materials
    • /
    • v.26 no.6
    • /
    • pp.455-462
    • /
    • 2019
  • ZrB2 ceramic and ZrB2 ceramic composites with the addition of SiC, WC, and SiC/WC are successfully synthesized by a spark plasma sintering method. During high-temperature oxidation, SiC additive form a SiO2 amorphous outer scale layer and SiC-deplete ZrO2 scale layer, which decrease the oxidation rate. WC addition forms WO3 during the oxidation process to result in a ZrO2/WO3 liquid sintering layer, which is known to improve the anti-oxidation effect. The addition of SiC and WC to ZrB2 reduces the oxygen effective diffusivity by one-fifth of that of ZrB2. The addition of both SiC and WC shows the formation of a SiO2 outer dense glass layer and ZrO2/WO3 layer so that the anti-oxidation effect is improved three times as much as that of ZrB2. Therefore, SiC- and WC-added ZrB2 has a lower two-order oxygen effective diffusivity than ZrB2; it improves the anti-oxidation performance 3 times as much as that of ZrB2.

Electrical and Optical Properties of Asymmetric Dielectric/Metal/Dielectric (D/M/D) Multilayer Electrode Prepared by Radio-Frequency Sputtering for Solar Cells

  • Pandey, Rina;Lim, Ju Won;Lim, Keun Yong;Hwang, Do Kyung;Choi, Won Kook
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.15-21
    • /
    • 2015
  • Transparent and conductive multilayer thin films consisting of three alternating layers FZTO/Ag/$WO_3$ have been fabricated by radio-frequency (RF) sputtering for the applications as transparent conducting oxides and the structural and optical properties of the resulting films were carefully studied. The single layer fluorine doped zinc tin oxide (FZTO) and tungsten oxide ($WO_3$) films grown at room temperature are found to have an amorphous structure. Multilayer structured electrode with a few nm Ag layer embedded in FZTO/Ag/$WO_3$ (FAW) was fabricated and showed the optical transmittance of 87.60 % in the visible range (${\lambda}=380{\sim}770nm$), quite low electrical resistivity of ${\sim}10^{-5}{\Omega}cm$ and the corresponding figure of merit ($T^{10}/R_s$) is equivalent to $3.0{\times}10^{-2}{\Omega}^{-1}$. The resultant power conversion efficiency of 2.50% of the multilayer based OPV is lower than that of the reference commercial ITO. Asymmetric D/M/D multilayer is a promising transparent conducting electrode material due to its low resistivity, high transmittance, low temperature deposition and low cost components.

A Study on Interfacial Phenomena of Tungsten Fiber Reinforced Aluminium Matrix Composite under Thermal Cycles (W 섬유강화(纖維强化) Al 합금기지(合金基地) 복합재(複合材)의 열(熱)cycle에 따른 계면거동(界面擧動)에 관(關)한 연구(硏究))

  • Huh, J.G.;Kim, J.T.;Hyun, Ch.Y.;Kim, Y.S.;Kim, S.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.3
    • /
    • pp.169-174
    • /
    • 1994
  • The reaction layer formed at interface between matrix and fiber has significant effects on the mechanical properties and behaviors of deformation m FRM. In this study, the mechanical properties and interfacial behaviors according to surface finishing on the fibers and according to heat treatment in FRM were investigated. FRM was fibricated by diffusion bonding method. In W/Al alloy composite and W/Al composite, W of which was coated with $WO_3$, the heat treatment was carried out thermal cycling method from 373K to 673K. In W/Al composite, W of which was coated with $WO_3$, growth of interface layer was hardly occured in spite of the increasing various thermal cycles. It was exhibited that oxidized W/Al composite were higher strength than non-oxidezed W/Al composite with the increasing thermal cycles. The compounds of fiber/matrix interface were analyzed into $WAl_{12}$, $WAl_7$, and $AlWO_3$, respectivly. Therefore the interfacial compounds of fiber/matrix seriously affected the mechanical properties and behaviors of deformation in FRM.

  • PDF

Cephalometric Characteristics of the Patients with Developed Anterior Open Bite Following Anterior Disc Dislocation without Reductions (비정복성 관절원판 전위와 연관되어 발생된 전치부 개교합 환자의 측방 두부방사선 계측)

  • Hur, Yun-Kyung;Choi, Jae-Kap
    • Journal of Oral Medicine and Pain
    • /
    • v.31 no.3
    • /
    • pp.255-263
    • /
    • 2006
  • Objectives: This article reported three patients developed anterior open bite seemed to be related to TMJ anterior disc dislocation without reduction(ADD WO R), but no evidence of condylar destructive or collapse and analyzed the craniofacial skeletal structure by means of cephalometric analysis. Results: All patients suddenly developed a centric relation/centric occlusion discrepancy, an increased overjet and an anterior open bite following ADD WO R. All patients had Angle's Class I occlusion and shallow bite, but they had skeletally Class III and Class II pattern and all were vertically significant hyperdivergent type. Conclusions: These 3 patients had characteristics of common facial morphology including:(1)Angle classification Class I and shallow bite,(2)high mandibular plane angle,(3)high gonial angle. Developed anterior open bite resulted from clockwise rotation of the mandible related TMJ ADD WO R, rather than a result from the eruption of posterior teeth. We hypothesize rotation may relate to attached direction of masticatory muscle.

Study on Engineering Properties of Earth Materials (흙의 공학적 성질에 관한 연구)

  • 김주범;윤충섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.17 no.3
    • /
    • pp.3815-3832
    • /
    • 1975
  • This study was made to investigate various engineering properties of earth materials resulting from their changes in density and moisture content. The results obtained in this study are summarized as follows: 1. The finner the grain size is, the bigger the Optimum Moisture Content(OMC) is, showing a linear relationship between percent passing of NO. 200 Sieve (n) and OMC(Wo) which can be represented by the equation Wo=0.186n+8.3 2. There is a linear relationship of inverse proportion between OMC and Maximum Dry Density (MDD) which can be represented by the equation ${\gamma}$d=2.167-0.026Wo 3. There is an exponential curve relationship between void ratio (es) and MDD whose equation can be expressed ${\gamma}$d=2.67e-0.4550.9), indicating that as MDD increases, void ratio decreases. 4. The coefficent of permeability increases in proportion to decrease of the MDD and this increase trend is more obvious in coarse material than in fine material, and more obvious in cohesionless soil than in cohesive soil. 5. Even in the same density, the coefficient of permeability is smaller in wet than in dry from the Optimum Moisture Content. 6. Showing that unconfined compressive strength increases in proportion to dry density increase, in unsaturated state the compacted in dry has bigger strength value than the compacted in wet. On the other hand, in saturated state, the compacted in dry has a trend to be smaller than the compacted in wet. 7. Even in the same density, unconfined compressive strength increases in proportion to cohesion, however, when in small density and in saturated state, this relationship are rejected. 8. In unsaturated state, cohesion force is bigger in dry than in wet from OMC. In saturated state, on the other hand, it is directly praportional to density. 9. Cohesion force decreases in proportion to compaction rate decrease. And this trend is more evident in coarse matorial than in fine material. 10. Internal friction angle of soil is not influenced evidently on the changes of moisture content and compaction rate in unsaturated state, On the other hand in saturated state it is influenced density. 11. Cohesion force is directly proportional to unconfined compressive strength(qu), indicating that it has approximately 35 percent of qu in unsaturated state and approximately 70 percent of qu in saturated state.

  • PDF

Fabrication and Properties of Porous Tungsten by Freeze-Drying Process (동결건조 공정을 이용한 텅스텐 다공체의 제조 및 특성)

  • Lee, Young-Sook;Oh, Sung-Tag
    • Korean Journal of Materials Research
    • /
    • v.21 no.9
    • /
    • pp.520-524
    • /
    • 2011
  • Porous W with controlled pore characteristics was fabricated by a freeze-drying process. $WO_3$ powder and camphene were used as the source materials of W and sublimable vehicles, respectively. Camphene slurries with $WO_3$ contents of 10 and 15 vol% were prepared by milling at $50^{\circ}C$ with a small amount of oligomeric polyester dispersant. Freezing of a slurry was done in a Teflon cylinder attached to a copper bottom plate cooled at $-25^{\circ}C$ while the growth direction of the camphene was unidirectionally controlled. Pores were generated subsequently by sublimation of the camphene during drying in air for 48 h. The green body was hydrogen-reduced at $800^{\circ}C$ for 30 min and sintered in a furnace at $900^{\circ}C$ for 1 h under a hydrogen atmosphere. Microstructural observation revealed that all of the sintered samples were composed of only W phase and showed large pores which were aligned parallel to the camphene growth direction. The porosity and pore size increased with increasing camphene content. The difference in the pore characteristics depending on the slurry concentration may be explained by the degree of powder rearrangement in the slurry. The results strongly suggest that a porous metal with the required pore characteristics can be successfully fabricated by a freeze-drying process using metal oxide powders.