• 제목/요약/키워드: WO$_3$

검색결과 722건 처리시간 0.048초

Zr2WP2O12 세라믹스의 합성과 소결거동 연구 (Synthesis and Sintering Behavior of Zr2WP2O12 Ceramics)

  • 김용현;김남옥;이상진
    • 한국세라믹학회지
    • /
    • 제49권6호
    • /
    • pp.586-591
    • /
    • 2012
  • $Zr_2WP_2O_{12}$ powder, which has a negative thermal expansion coefficient, was synthesized by a solid-state reaction with $ZrO_2$, $WO_3$ and $NH_4H_2PO_4$ as the starting materials. The synthesis behavior was dependent on the solvent media used in the wet mixing process. The $Zr_2WP_2O_{12}$ powder prepared with a solvent consisting of D. I. water was fully crystallized at $1200^{\circ}C$, showing a sub-micron particle size. According to the results obtained from a thermal analysis, a $ZrP_2O_7$ was synthesized at a low temperature of $310^{\circ}C$, after which it was reacted with $WO_3$ at $1200^{\circ}C$. A new sintering additive, $Al(OH)_3$, was applied for the densification of the $Zr_2WP_2O_{12}$ powders. The cold isostatically pressed samples were densified with 1 wt% $Al(OH)_3$ additive or more at $1200^{\circ}C$ for 4 h. The main densification mechanism was liquid-phase sintering due to the liquid which resulted from the reaction with amorphous or unstable $Al_2O_3$ and $WO_3$. The densified $Zr_2WP_2O_{12}$ ceramics showed a relative density of 90% and a negative thermal expansion coefficient of $-3.4{\times}10^{-6}/^{\circ}C$. When using ${\alpha}-Al_2O_3$ as the sintering agent, densification was not observed at $1200^{\circ}C$.

Oxide and fluoride single crystals for scintillator applications

  • M. Nikl;K. Blazek;P. Fabeni;A. Vedda;M. Martini;M. Kobayashi;K. Shimamura;T. Fukuda
    • 한국결정성장학회지
    • /
    • 제12권1호
    • /
    • pp.21-26
    • /
    • 2002
  • Luminescence and scintillation properties of $PbWO_{4},\;XAIO_{3}$ (X = Y, Lu, Y-Lu) and $LiBaF_{3}$ based scintillators are reported. The effect of present and often not understood defect states is demonstrated in different scintillator parameters and related measurements are discussed. Importance of understanding of defect states participating in the processes of energy transfer and storage in the scintillating materials is emphasised.

흙댐의 밀도변화에 의한 압밀침하에 대한 연구 (A study on the settlement of earth dam by the changes of the density)

  • 윤충섭
    • 한국농공학회지
    • /
    • 제28권3호
    • /
    • pp.89-98
    • /
    • 1986
  • This study was carried out for the settlement and camber of earth dam by the changes of the density. The testing material was taken five kinds of Soil used as banking material and it was compacted by 100, 95, 90, 85 and 80% compaction degree. The results of the settlement of earth dam whose height ranges from 10m to 50m are as follows. 1.The more the fine particle (n) increases, the higher the liquid limit (WL) and the lower the dry density (rd) becomes as follows; rd=2. 22-0. 0052n (gr/cm$_3$) rd=2. 394-0. 0164WL rd=2. 185-(5. 8n-2. 5WL)X10-$_3$ 2. The higher the optimum moisture content (Wo) becomes, the lower the density becomes as follows; rt,=2. 68-0. 028Wo rd=2. 578-0. 04Wo 3. 3.Most of the consolidation occurs immediately by loading and the more the fine particle increases, the lower the coefficient of consolidation becomes. 4.The more the fine particle increases and lower the compaction degree (D) becomes,the lower the pre-consolidation load (Pc) becomes but on the contrary the compression index (Cc) becomes higher. Those equation is as follows. Pc=3. 32-(4. 3n-3. 0D) X10-2 (kg/cm$^2$) Cc=0. 41+(1. 33n-4. 44D) X10-$^3$ 5.The more the consolidation load (P) increases, the lower the coefficient of volume change (mv) becomes with mv=ap-b, the higher the consolidation ratio (u) becomes with U= (0. 6~1. 35)PO.4 6.The more the fine particle (n) increases, the more the settlement of dam occurs with U=anb and 60-80% of the settlement occurs under construction. 7.The camber of dam has higher value in condition that has more fine particle, poorer compaction and higher height of dam. In the dam construction about twice value of table 7 is required for dam safety.

  • PDF

Optical, thermal and gamma ray attenuation characteristics of tungsten oxide modified: B2O3-SrCO3-TeO2-ZnO glass series

  • Hammam Abdurabu Thabit;Abd Khamim Ismail;M.I. Sayyed;S. Hashim;I. Abdullahi;Mohamed Elsafi;K. Keshavamurthy;G. Jagannath
    • Nuclear Engineering and Technology
    • /
    • 제56권1호
    • /
    • pp.247-256
    • /
    • 2024
  • The glass series modified by tungsten oxide was created using the compounds (75-x) B2O3- 10SrCO3- 8TeO2- 7ZnO - xWO3, where x = 0, 1, 5, 10, 22, 27, 34, and 40% mole percentage. A UV-visible spectrophotometer and thermogravimetric-differential thermal analysis (TG-DTA) methods were employed to characterize the specimen's optical and phase transition attributes, respectively. The mass-attenuation coefficient (AC) of all created glasses from BSTZW0 to BSTZ7 was estimated using Geant4 code from 0.05 to 3 MeV and compared to the XCOM software results, with a relative difference of less than 2% between the two results. The increase of WO3 percentage lead to an increase in the Linear-AC at each studied energy, and this is mainly due to the fact that the higher the percentage of WO3 in the glass increases its density which causes an increase in the Linear-AC, so an energy of 0.06 MeV, as an example, the values of the Linear-AC was 4.009, 4.509, 5.442, 6812, 8.564, 9.856, 10.999 and 11.628 cm-1 form BSTZW0 too BSTZW7, respectively. The Half-VL (value layer), Mean-FP (free path), Tenth-VL, and Radiation attenuation performance (RAP) were also calculated for the current BSTZW-glass samples and revealed that BSTZW7 had the best gamma ray attenuation performance at all discussed energies when compared to other studied glass samples.

$WO_3$-$SnO_2$박막 센서의 가스감지특성 (Gas-sensing Characteristics of $WO_3$-$SnO_2$Thin-film Sensors)

  • 유광수;김태송
    • 한국세라믹학회지
    • /
    • 제38권12호
    • /
    • pp.1180-1186
    • /
    • 2001
  • 고진공 저항 가열식 증발 증착기를 이용하여 약 1$mu extrm{m}$ 두께의 W $O_3$-Sn $O_2$박막 가스센서를 제작하였다. 50$0^{\circ}C$에서 4시간동안 공기중 열처리한 다음, 제조된 박막의 결정성과 미세구조를 관찰하였다. 100 ppm의 산화성 가스인 N $O_2$와 환원성 가스인 CO 가스에 대한 가스 감응 특성을 측정한 결과, N $O_2$가스에 대한 감도( $R_{gas}$/ $R_{air}$)는 기판온도 25$0^{\circ}C$에서 W $O_3$박막이 약 1000으로서 가장 높았으며, CO 가스 감도는 기판온도 15$0^{\circ}C$~25$0^{\circ}C$ 범위에서 약 0.25로 가장 양호하였다.하였다.

  • PDF