• Title/Summary/Keyword: WMN(Wireless Mesh Network)

Search Result 89, Processing Time 0.022 seconds

IEEE 802.11s based Wireless Mesh Networks for Smart Grid (스마트 그리드를 위한 IEEE 802.11s 기반 무선 메쉬 네트워크)

  • Jung, Ji-Sun;Kim, Jae-Beom;Ko, Young-Bae;Lee, Sang-Youm
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.9B
    • /
    • pp.1390-1398
    • /
    • 2010
  • We present the concept of applying Wireless Mesh Networking (WMN) technology into Smart Grid, which is recently rising as a potential technology in various areas thanks to its advantages such as low installation costs, high scalability, and high flexibility. Smart Grid is an intelligent, next-generation electrical power network that can maximize energy efficiency by monitoring utility information in real-time and controlling the flow of electricity with IT communications technology converged to the existing power grid. WMNs must be designed for Smart Grid communication systems considering not only the high level of reliability, QoS support and mass-data treatment but also the properties of the traditional power grid. In addition, it is essential to design techniques based on international standards to support interoperability and scalability. In this paper, we evaluate the performance of IEEE 802.11s based Smart Grid Mesh Networks by conducting preliminary simulation studies with the ns-3 simulator. We also outline some challenging issues that should be reviewed when considering WMNs as the candidate for Smart Grid communication infrastructure.

Contents Routing in the OpenFlow-based Wireless Mesh Network Environment (OpenFlow기반 무선 메쉬 네트워크 환경에서의 컨텐츠 라우팅)

  • Kim, Won-Suk;Chung, Sang-Hwa;Choi, Hyun-Suk;Do, Mi-Rim
    • Journal of KIISE
    • /
    • v.41 no.10
    • /
    • pp.810-823
    • /
    • 2014
  • The wireless mesh network based on IEEE 802.11s provides a routing based on a destination address as it inherits legacy internet architecture. However, this architecture interested in not 'what' which is originally the users goal but 'where'. Futhermore, because of the rapid increase of the number of mobile devices recently, the mobile traffic increases geometrically. It reduces the network effectiveness as increasing many packets which have same payload in the situation of many users access to the same contents. In this paper, we propose an OpenFlow-based contents routing for the wireless mesh network(WMN) to solve this problem. We implement contents layer to the legacy network layer which mesh network uses and the routing technique based on contents identifier for efficient contents routing. In addition we provide flexibility as we use OpenFlow. By using this, we implement caching technique to improve effectiveness of network as decreasing the packet which has same payload in WSN. We measure the network usage to compare the flooding technique, we measure the delay to compare environment using caching and non caching. As a result of delay measure it shows 20% of performance improve, and controller message decrease maximum 89%.

QoS improving method of Smart Grid Application using WMN based IEEE 802.11s (IEEE 802.11s기반 WMN을 사용한 Smart Grid Application의 QoS 성능향상 방안 연구)

  • Im, Eun Hye;Jung, Whoi Jin;Kim, Young Hyun;Kim, Byung Chul;Lee, Jae Yong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.1
    • /
    • pp.11-23
    • /
    • 2014
  • Wireless Mesh Network(WMN) has drawn much attention due to easy deployment and good scalability. Recently, major power utilities have been focusing on R&D to apply WMN technology in Smart Grid Network. Smart Grid is an intelligent electrical power network that can maximize energy efficiency through bidirectional communication between utility providers and customers with ICT(Information Communication Technology). It is necessary to guarantee QoS of some important data in Smart Grid system such as real-time data delivery. In this paper, we suggest QoS enhancement method for WMN based Smart Grid system using IEEE 802.11s. We analyze Smart Grid Application characteristics and apply IEEE 802.11s WMN scheme for Smart Grid in domestic power communication system. Performance evaluation is progressed using NS-2 simulator implementing IEEE 802.11s. The simulation results show that the QoS enhancement scheme can guarantee stable bandwidth irrespective of traffic condition due to IEEE 802.11s reservation mechanism.

A Mesh Router Placement Scheme for Minimizing Interference in Indoor Wireless Mesh Networks (실내 무선 메쉬 네트워크에서의 간섭 최소화를 위한 메쉬 라우터 배치 기법)

  • Lee, Sang-Hwan
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.4
    • /
    • pp.421-426
    • /
    • 2010
  • Due to the ease of deployment and the extended coverage, wireless mesh networks (WMNs) are gaining popularity and research focus. For example, the routing protocols that enhance the throughput on the WMNs and the link quality measurement schemes are among the popular research topics. However, most of these works assume that the locations of the mesh routers are predetermined. Since the operators in an Indoor mesh network can determine the locations of the mesh routers by themselves, it is essential to the WMN performance for the mesh routers to be initially placed by considering the performance issues. In this paper, we propose a mesh router placement scheme based on genetic algorithms by considering the characteristics of WMNs such as interference and topology. There have been many related works that solve similar problems such as base station placement in cellular networks and gateway node selection in WMNs. However, none of them actually considers the interference to the mesh clients from non-associated mesh routers in determining the locations of the mesh routers. By simulations, we show that the proposed scheme improves the performance by 30-40% compared to the random selection scheme.

Topology Aggregation for Hierarchical Wireless Tactical Networks

  • Pak, Woo-Guil;Choi, Young-June
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.2
    • /
    • pp.344-358
    • /
    • 2011
  • Wireless tactical network (WTN) is the most important present-day technology enabling modern network centric warfare. It inherits many features from WMNs, since the WTN is based on existing wireless mesh networks (WMNs). However, it also has distinctive characteristics, such as hierarchical structures and tight QoS (Quality-of-Service) requirements. Little research has been conducted on hierarchical protocols to support various QoS in WMN. We require new protocols specifically optimized for WTNs. Control packets are generally required to find paths and reserve resources for QoS requirements, so data throughput is not degraded due to overhead. The fundamental solution is to adopt topology aggregation, in which a low tier node aggregates and simplifies the topology information and delivers it to a high tier node. The overhead from control packet exchange can be reduced greatly due to decreased information size. Although topology aggregation is effective for low overhead, it also causes the inaccuracy of topology information; thus, incurring low QoS support capability. Therefore, we need a new topology aggregation algorithm to achieve high accuracy. In this paper, we propose a new aggregation algorithm based on star topology. Noting the hierarchical characteristics in military and hierarchical networks, star topology aggregation can be used effectively. Our algorithm uses a limited number of bypasses to increase the exactness of the star topology aggregation. It adjusts topology parameters whenever it adds a bypass. Consequently, the result is highly accurate and has low computational complexity.

Analysis for Protocol Layer Technical Requirements of Wireless Mesh Networks Optimization (무선 메쉬 네트워크의 최적화를 위한 프로토콜 계층별 기술적 요구사항에 관한 분석)

  • Lee, Soon-Sik;Yun, Sang-Man;Lee, Sang-Wook;Jeon, Seong-Geun;Lee, Woo-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.1
    • /
    • pp.77-88
    • /
    • 2010
  • Wireless Mesh Networks are consist of mobility mesh clients and mesh routers. WMNs can communicate with heterogeneous networks such as IEEE 802.11, IEEE 802.15, IEEE 802.16 and sensor networks. WMNs which is based on ad hoc network are on research and developing to enhance WLANs, WPANs, or WMANs. WMNs can offer environment to serve human, service to person area, campus, and metro. But WMNs has many problems to solve about enhancing performance and generalization. Among them, Existing protocol layers has many problems enhancing to optimize WMNs. This document issues problems about WMNs in protocol layer and suggest the solutions. Also, suggests the requirements and the methods of QoS supporting issue.

QoS Routing for WiMedia-Based Wireless Mesh Networks (WiMedia 기반 무선 메쉬 네트워크에서 QoS를 고려한 경로 설정)

  • Park, Sung-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.3
    • /
    • pp.317-324
    • /
    • 2016
  • WiMedia provides the data rate of up to 1Gbps, but the transmission range is restricted to approximately 10 meters. When constructing a multi-hop WiMedia network to extend its coverage, conventional hop-based routing may not guarantee satisfactorily the required QoS. We propose two QoS routing techniques for the WiMedia-based wireless mesh network. The proopsed QoS routing reflects the characteristics of TDMA-based WiMedia MAC and develops QoS extensions separately for on-demand routing and table-driven routing. Through simulations, we identify that the QoS routing shows better performance than the hop-based routing. It also turns out that the QoS on-demand routing and the QoS table-driven routing show conflicting performance results depending on the transmission power.

Lifetime Maximizing Routing Algorithm for Multi-hop Wireless Networks (다중-홉 무선 네트워크 환경에서 수명 최대화를 위한 라우팅 알고리즘)

  • Lee, Keon-Taek;Han, Seung-Jae;Park, Sun-Ju
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.4
    • /
    • pp.292-300
    • /
    • 2008
  • In multi-hop wireless networks like Wireless Mesh Networks (WMN) and Wireless Sensor Networks (WSN), nodes often rely on batteries as their power source. In such cases, energy efficient routing is critical. Many schemes have been proposed to find the most energy efficient path, but most of them do not achieve optimality on network lifetime. Once found, the energy efficient path is constantly used such that the energy of the nodes on the path is depleted quickly. As an alternative, the approaches that dynamically change the path at run time have also been proposed. These approaches, however, involve high overhead of establishing multiple paths. In this paper, we first find an optimal multi-path routing using LP. Then we apply an approximation algorithm to derive a near-optimal solution for single-path routing. We compare the performance of the proposed scheme with several other existing algorithms through simulation.

Multi-Interface Multi-Channel R-HWMP Routing Protocol for End-to-End Bandwidth Reservation in IEEE 802.11s WMNs (IEEE 802.11s 무선 메쉬 네트워크에서 종단간 대역폭 예약을 위한 멀티 인터페이스 멀티 채널 R-HWMP 라우팅 프로토콜)

  • Jung, Whoi Jin;Kim, Bong Gyu;Lee, Jae Yong;Kim, Byung Chul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.7
    • /
    • pp.37-48
    • /
    • 2014
  • Wireless mesh networks have emerged as a key technology in environment that needs wireless multi-hop communication without infrastructure and IEEE 802.11s mesh network standard have currently been established. One of big differences between this standard and the legacy IEEE 802.11 is that MCCA MAC is included to support QoS. MCCA supports bandwidth reservations between neighbors, so it can satisfy the QoS of bandwidth guarantee. However, MCCA has dis-advantages as follow; 1) it can not guarantee end-to-end bandwidth, 2) in multi-interface multi-channel wireless environments, the IEEE 802.11s does not provide a bandwidth reservation protocol and a wireless channel assignment etc. In this paper, we have proposed MIMC R-HWMP, which expands R-HWMP that was proposed in our previous work[3], to support multi-interface multi-channel. By simulation, we showed end-to-end bandwidth guarantee and the increase in the available bandwidth in multi-interface multi-channel wireless mesh networks.