• Title/Summary/Keyword: WLED driver

Search Result 3, Processing Time 0.017 seconds

A Study of White-LED Driver IC for Mobile Applications (모바일용 White-LED Driver IC에 관한 연구)

  • Ko, Young-Seok;Park, Shi-Hong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.7
    • /
    • pp.572-575
    • /
    • 2009
  • In this study, we proposed WLED(White-Light Emitting Diode) driver IC for mobile applications. This IC drove WLED for mobile applications with low input voltage and high efficiency by using boost converter. The device was designed by using boost converter applied current-mode control algorithm and provided PWM(Pulse Width Modulation) & analog dimming. Designed IC consisted of bias block, drive block, control block, protection block. We confirmed this device worked well through a application PCB (Printed Circuit Board) test.

A White-LED Driver IC for Mobile Applications (모바일용 White-LED Driver IC)

  • Ko, Young-Seok;Park, Shi-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04b
    • /
    • pp.39-40
    • /
    • 2009
  • This paper presents a white-LED driver IC for a mobile application. It uses a high efficiency current mode boost converter method for a low voltage application. For a LED drive, it provides a PWM(Pulse Width Modulation) and analog dimming function. The device was designed and fabricated using 0.35um BCD process. The evaluated waveforms for an implemented IC show promising results.

  • PDF

Performance Investigation of Visible Light Communication Using Super Bright White LED and Fresnel Lens (조명용 고출력 백색 LED와 프레넬 렌즈를 이용한 가시광 통신 성능연구)

  • Kim, Min-Soo;Sohn, Kyung-Rak
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.63-67
    • /
    • 2015
  • White light-emitting diode (WLED) is growing interest in using both illumination and communications. This paper reports visible light communication (VLC) composed of a super bright white light-emitting diode, low cost commercial photo-diode and a Fresnel lens. LED driver is consisted of the power MOSFET and MOSFET driver that switches the LED on and off. The modulation bandwidth of the LED used was determined to be 8 MHz. However, it was possible to communicate up to 1 Mbps under illumination of 500 lx because of the weak signal power and a low spectral sensitivity of the SHF213 as a PIN photodiode. In order to enhance the system bandwidth, the LED light was focused on the PIN photodiode by use of the Fresnel lens. As a result of that, visible light link was operated up to modulation bandwidth of the LED. The signal to noise ratio can be improved by 40 dB using an optical concentration at the receiver.