• 제목/요약/키워드: WISDM dataset

검색결과 2건 처리시간 0.016초

균형적인 신체활동을 위한 맞춤형 AI 운동 추천 서비스 (Customized AI Exercise Recommendation Service for the Balanced Physical Activity)

  • 김창민;이우범
    • 융합신호처리학회논문지
    • /
    • 제23권4호
    • /
    • pp.234-240
    • /
    • 2022
  • 본 논문은 직종별 근무 환경에 따른 상대적 운동량을 고려한 맞춤형 AI 운동 추천 서비스 방법을 제안한다. 가속도 및 자이로 센서를 활용하여 수집된 데이터를 18가지 일상생활의 신체활동으로 분류한 WISDM 데이터베이스를 기반으로 전신, 하체, 상체의 3가지 활동으로 분류한 후 인식된 활동 지표를 통해 적절한 운동을 추천한다. 본 논문에서 신체활동 분류를 위해서 사용하는 1차원 합성곱 신경망(1D CNN; 1 Dimensional Convolutional Neural Network) 모델은 커널 크기가 다른 다수의 1D 컨볼루션(Convolution) 계층을 병렬적으로 연결한 컨볼루션 블록을 사용한다. 컨볼루션 블록은 하나의 입력 데이터에 다층 1D 컨볼루션을 적용함으로써 심층 신경망 모델로 추출할 수 있는 입력 패턴의 세부 지역 특징을 보다 얇은 계층으로도 효과적으로 추출 할 수 있다. 제안한 신경망 모델의 성능 평가를 위해서 기존 순환 신경망(RNN; Recurrent Neural Network) 모델과 비교 실험한 결과 98.4%의 현저한 정확도를 보였다.

가속도 센서 데이터 기반의 행동 인식 모델 성능 향상 기법 (Improving Performance of Human Action Recognition on Accelerometer Data)

  • 남정우;김진헌
    • 전기전자학회논문지
    • /
    • 제24권2호
    • /
    • pp.523-528
    • /
    • 2020
  • 스마트 모바일 장치의 확산은 인간의 일상 행동 분석을 보다 일반적이고 간단하게 만들었다. 행동 분석은 이미 본인 인증, 감시, 건강 관리 등 많은 분야에서 사용 중이고 그 유용성이 증명되었다. 본 논문에서는 스마트폰의 가속도 센서 신호를 사용하여 효율적이고 정확하게 행동 인식을 수행하는 합성곱 신경망(모델 A)과 순환 신경망까지 적용한(모델 B) 심층 신경망 모델을 제시한다. 모델 A는 batch normalization과 같은 단순한 기법만 적용해도 이전의 결과보다 더 작은 모델로 더 높은 성능을 달성할 수 있다는 것을 보인다. 모델 B는 시계열 데이터 모델링에 주로 사용되는 LSTM 레이어를 추가하여 예측 정확도를 더욱 높일 수 있음을 보인다. 이 모델은 29명의 피실험자를 대상으로 수집한 벤치마크 데이트 세트에서 종합 예측 정확도 97.16%(모델 A), 99.50%(모델 B)를 달성했다.