• 제목/요약/키워드: WIND SPEED

검색결과 3,336건 처리시간 0.03초

Analysis of wind field data surrounding nuclear power plants to improve the effectiveness of public protective measures

  • Jin Sik Choi;Jae Wook Kim;Han Young Joo;Jeong Yeon Lee;Chae Hyun Lee;Joo Hyun Moon
    • Nuclear Engineering and Technology
    • /
    • 제55권10호
    • /
    • pp.3599-3616
    • /
    • 2023
  • After a nuclear power plant (NPP) accident, it would be helpful to predict the movement of the radioactive plume emitted from the NPP as accurately as possible to protect the nearby population. Radioactive plumes are mainly affected by wind direction and speed. Since it is difficult to identify the wind direction and speed immediately after the accident, a good understanding of the historical wind data could save many lives and ensure smoother evacuation procedures. In this study, wind data for the past 10 years are analyzed for the five NPPs in the Republic of Korea (ROK). The analyzed data include wind direction and wind speed from 2012 to 2021. In particular, the characteristics of the wind field blowing from the NPPs to the nearest densely populated regions are examined. Finally, suggestions to improve evacuation plans are made.

제주 연안지역 주변의 잠재 풍력에너지 평가 (Assessment of Wind Energy Potential around Jeju Coastal Area)

  • 김남형;진정운
    • 대한토목학회논문집
    • /
    • 제30권6B호
    • /
    • pp.617-625
    • /
    • 2010
  • 풍속의 세제곱에 비례하는 풍력발전기의 전기발전량을 효과적으로 증대시키기 위해서는, 풍속이 강한 부지 선정이 중요하다. 일반적으로 내륙지역보다 풍속이 강한 연안지역에 풍력발전기를 설치하는 것이 바람직하다. 또, 해상풍력개발은 풍력발전기의 중요한 단점 중 하나인 소음 문제를 해결할 수 있는 방법으로 기대된다. 풍력개발 사업을 실행하는 과정에서, 어떤 지역의 풍력발전 가능성을 미리 파악하는 것은 풍력발전의 최적지를 선정하는데 있어서 중요한 요소들 중 하나이다. 본 연구는 기상청이 10년간 관측한 제주도 14개 지역의 풍향 및 풍속데이터를 가지고 제주 연안지역의 풍력발전 가능성에 대해 검토하였다. 풍력발전기의 설치높이를 80 m로 가정하고 풍속데이터를 보정하였으며, 이 값을 가지고 풍력에너지 밀도와 연간 풍력에너지량을 산출하였다. 그리고 모든 관측지점의 연간 전기발전량과 에너지취득률은 3,000 KW 풍력발전기에 관한 정보를 이용하여 산출되었다.

Aerodynamic effect of wind barriers and running safety of trains on high-speed railway bridges under cross winds

  • Guo, Weiwei;Xia, He;Karoumi, Raid;Zhang, Tian;Li, Xiaozhen
    • Wind and Structures
    • /
    • 제20권2호
    • /
    • pp.213-236
    • /
    • 2015
  • For high-speed railways (HSR) in wind prone regions, wind barriers are often installed on bridges to ensure the running safety of trains. This paper analyzes the effect of wind barriers on the running safety of a high-speed train to cross winds when it passes on a bridge. Two simply-supported (S-S) PC bridges in China, one with 32 m box beams and the other with 16 m trough beams, are selected to perform the dynamic analyses. The bridges are modeled by 3-D finite elements and each vehicle in a train by a multi-rigid-body system connected with suspension springs and dashpots. The wind excitations on the train vehicles and the bridges are numerically simulated, using the static tri-component coefficients obtained from a wind tunnel test, taking into account the effects of wind barriers, train speed and the spatial correlation with wind forces on the deck. The whole histories of a train passing over the two bridges under strong cross winds are simulated and compared, considering variations of wind velocities, train speeds and without or with wind barriers. The threshold curves of wind velocity for train running safety on the two bridges are compared, from which the windbreak effect of the wind barrier are evaluated, based on which a beam structure with better performance is recommended.

제주지역 바람자료 분석 및 풍속 예측에 관한 연구 (A Study on the Wind Data Analysis and Wind Speed Forecasting in Jeju Area)

  • 박윤호;김경보;허수영;이영미;허종철
    • 한국태양에너지학회 논문집
    • /
    • 제30권6호
    • /
    • pp.66-72
    • /
    • 2010
  • In this study, we analyzed the characteristics of wind speed and wind direction at different locations in Jeju area using past 10 years observed data and used them in our wind power forecasting model. Generally the strongest hourly wind speeds were observed during daytime(13KST~15KST) whilst the strongest monthly wind speeds were measured during January and February. The analysis with regards to the available wind speeds for power generation gave percentages of 83%, 67%, 65% and 59% of wind speeds over 4m/s for the locations Gosan, Sungsan, Jeju site and Seogwipo site, respectively. Consequently the most favorable periods for power generation in Jeju area are in the winter season and generally during daytime. The predicted wind speed from the forecast model was in average lower(0.7m/s) than the observed wind speed and the correlation coefficient was decreasing with longer prediction times(0.84 for 1h, 0.77 for 12h, 0.72 for 24h and 0.67 for 48h). For the 12hour prediction horizon prediction errors were about 22~23%, increased gradually up to 25~29% for 48 hours predictions.

Prediction of typhoon design wind speed and profile over complex terrain

  • Huang, W.F.;Xu, Y.L.
    • Structural Engineering and Mechanics
    • /
    • 제45권1호
    • /
    • pp.1-18
    • /
    • 2013
  • The typhoon wind characteristics designing for buildings or bridges located in complex terrain and typhoon prone region normally cannot be achieved by the very often few field measurement data, or by physical simulation in wind tunnel. This study proposes a numerical simulation procedure for predicting directional typhoon design wind speeds and profiles for sites over complex terrain by integrating typhoon wind field model, Monte Carlo simulation technique, CFD simulation and artificial neural networks (ANN). The site of Stonecutters Bridge in Hong Kong is chosen as a case study to examine the feasibility of the proposed numerical simulation procedure. Directional typhoon wind fields on the upstream of complex terrain are first generated by using typhoon wind field model together with Monte Carlo simulation method. Then, ANN for predicting directional typhoon wind field at the site are trained using representative directional typhoon wind fields for upstream and these at the site obtained from CFD simulation. Finally, based on the trained ANN model, thousands of directional typhoon wind fields for the site can be generated, and the directional design wind speeds by using extreme wind speed analysis and the directional averaged mean wind profiles can be produced for the site. The case study demonstrated that the proposed procedure is feasible and applicable, and that the effects of complex terrain on design typhoon wind speeds and wind profiles are significant.

Near-ground boundary layer wind characteristics analysis of Typhoon "Bailu" based on field measurements

  • Dandan Xia;Li Lin;Liming Dai;Xiaobo Lin
    • Wind and Structures
    • /
    • 제39권1호
    • /
    • pp.15-30
    • /
    • 2024
  • In this paper, detailed wind field data of the full path of typhoon "Bailu" were obtained based on site measurements. Typhoon "Bailu" made first landfall southeast of the Taiwan Strait with a wind speed of approximately 30 m/s near the center of the typhoon eye and a second landfall in Dongshang County in Fujian Province. The moving process is classified into 3 regions for analysis and comparison. Detailed analyses of wind characteristics including wind profile, turbulence intensity, gust factor, turbulence integral scale and wind power spectral density function at the full process of the typhoon are conducted, and the findings are presented in this paper. Wind speed shows significant dependence on both the direction of the moving path and the distance between the typhoon center and measurement site. Wind characteristics significantly vary with the moving path of the typhoon center. The relationship between turbulence intensity and gust factor at different regions is investigated. The integral turbulence scales and wind speed are fitted by a Gaussian model. Such analysis and conclusions may provide guidance for future bridge wind-resistant design in engineering applications.

GIS를 이용한 지형에 의한 풍속할증계수 산정 방법 (Estimating Method of Topographic Factor of Design Wind Speed Using GIS)

  • 최세휴;서은수
    • 한국지리정보학회지
    • /
    • 제16권3호
    • /
    • pp.126-135
    • /
    • 2013
  • 국토의 70%이상이 산지로 구성되어 있는 한국은 도시내부에 크고 작은 산, 언덕이 위치하고 있다. 따라서 건축구조기준에서는 건물의 풍하중 설계 시 지형의 영향에 따른 풍속의 증가를 고려하도록 하고 있지만 지형에 의한 풍속할증계수 산정 시 건물 주변에 두 개 이상의 산지가 위치하거나 지표면의 정의와 높이가 명확하지 않을 경우 설계자의 주관에 의해 지형에 의한 풍속할증계수를 산정함으로써 비합리적인 내풍설계가 이루어지고 있다. 따라서 본 논문에서는 이러한 문제점을 해결하고 보다 합리적인 지형에 의한 풍속할증계수를 산정하기 위하여 ArcGIS를 이용하여 지형에 의한 풍속할증계수를 산정하는 방법을 제시하고자 한다. 이를 위해 본 논문에서는 비교적 높은 위치정확도를 가진 1:5,000 수치지형도를 이용하여 지형에 의한 풍속할증계수 산정 시 적용범위를 명확하게 정의함으로서 지표면과 정점을 명료하게 산정하여 보다 합리적으로 지형에 의한 풍속할 증계수를 산정하였다.

입력변수의 조건에 따른 대기확산모델의 민감도 분석 (Sensitivity Analysis of the Atmospheric Dispersion Modeling through the Condition of Input Variable)

  • 정진도;김장우;김정태
    • 한국환경과학회지
    • /
    • 제14권9호
    • /
    • pp.851-860
    • /
    • 2005
  • In order to how well predict ISCST3(lndustrial Source Complex Short Term version 3) model dispersion of air pollutant at point source, sensitivity was analysed necessary parameters change. ISCST3 model is Gaussian plume model. Model calculation was performed with change of the wind speed, atmospheric stability and mixing height while the wind direction and ambient temperature are fixed. Fixed factors are wind direction as the south wind(l80") and temperature as 298 K(25 "C). Model's sensitivity is analyzed as wind speed, atmospheric stability and mixing height change. Data of stack are input by inner diameter of 2m, stack height of 30m, emission temperature of 40 "C, outlet velocity of 10m/s. On the whole, main factor which affects in atmospheric dispersion is wind speed and atmospheric stability at ISCST3 model. However it is effect of atmospheric stability rather than effect of distance downwind. Factor that exert big influence in determining point of maximum concentration is wind speed. Meanwhile, influence of mixing height is a little or almost not.

NREL 5MW 풍력터빈의 제어시스템 설계 (Control System Design of NREL 5MW Wind Turbine)

  • 남윤수;임창희
    • 한국태양에너지학회 논문집
    • /
    • 제32권5호
    • /
    • pp.31-40
    • /
    • 2012
  • This paper introduces a methodology for NREL 5MW wind turbine, which is the variable speed and variable pitch(VSVP) control system. This control strategy maximizes the power extraction capability from the wind in the low wind speed region and regulates the wind turbine power as the rated one for the high wind speed region. Also, pitch control efficiency is raised by using pitch scheduling.Torque schedule is made of torque table depending on the rotor speed. Torque control is used for vertical region in a torque-rotor speed chart. In addition to these, mechanical loads reduction using a drive train damper and exclusion zone on a torque schedule is tried. The NREL 5MW wind turbine control strategy is comprised by the generator torque and blade pitch control. Finally, proposed control system is verified through GH Bladed simulation.

가변 풍력발전 시스템의 최대출력 제어를 위한 Fuzzy 제어기 설계 (A fuzzy logic Controller design for Maximum Power Extraction of variable speed Wind Energy Conversion System)

  • 김재곤;김병륜;허욱열
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 D
    • /
    • pp.2307-2309
    • /
    • 2004
  • This paper presents a modeling and simulation of a fuzzy controller for maximum power extraction of a grid-connected wind energy conversion system with a link of a rectifier and an inverter. It discusses the maximum power control algorithm for a wind turbine and proposes, in a graphical form, the relationships of wind turbine output, rotor speed, power coefficient, tip-speed ratio with wind speed when the wind turbine is operated under the maximum power control. The control objective is to always extract maximum power from wind and transfer the power to the utility by controlling both the pitch angle of the wind turbine blades and the inverter firing angle. Pitch control method is mechanically complicated, but the control performance is better than that of the stall regulation method. The simulation results performed on MATLAB will show the variation of generator's rotor angle and rotor speed, pitch angle, and generator output.

  • PDF