• Title/Summary/Keyword: WIND DIRECTION

Search Result 1,418, Processing Time 0.029 seconds

Field measurement results of Tsing Ma suspension Bridge during Typhoon Victor

  • Xu, Y.L.;Zhu, L.D.;Wong, K.Y.;Chan, K.W.Y.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.6
    • /
    • pp.545-559
    • /
    • 2000
  • A Wind and Structural Health Monitoring System (WASHMS) has been installed in the Tsing Ma suspension Bridge in Hong Kong with one of the objectives being the verification of analytical processes used in wind-resistant design. On 2 August 1997, Typhoon Victor just crossed over the Bridge and the WASHMS timely recorded both wind and structural response. The measurement data are analysed in this paper to obtain the mean wind speed, mean wind direction, mean wind inclination, turbulence intensity, integral scale, gust factor, wind spectrum, and the acceleration response and natural frequency of the Bridge. It is found that some features of wind structure and bridge response are difficult to be considered in the currently used analytical process for predicting buffeting response of long suspension bridges, for the Bridge is surrounded by a complex topography and the wind direction of Typhoon Victor changes during its crossing. It seems to be necessary to improve the prediction model so that a reasonable comparison can be performed between the measurement and prediction for long suspension bridges in typhoon prone regions.

Wavelet-transform-based damping identification of a super-tall building under strong wind loads

  • Xu, An;Wu, Jiurong;Zhao, Ruohong
    • Wind and Structures
    • /
    • v.19 no.4
    • /
    • pp.353-370
    • /
    • 2014
  • A new method is proposed in this study for estimating the damping ratio of a super tall building under strong wind loads with short-time measured acceleration signals. This method incorporates two main steps. Firstly, the power spectral density of wind-induced acceleration response is obtained by the wavelet transform, then the dynamic characteristics including the natural frequency and damping ratio for the first vibration mode are estimated by a nonlinear regression analysis on the power spectral density. A numerical simulation illustrated that the damping ratios identified by the wavelet spectrum are superior in precision and stability to those values obtained from Welch's periodogram spectrum. To verify the efficiency of the proposed method, wind-induced acceleration responses of the Guangzhou West Tower (GZWT) measured in the field during Typhoon Usagi, which affected this building on September 22, 2013, were used. The damping ratios identified varied from 0.38% to 0.61% in direction 1 and from 0.22% to 0.59% in direction 2. This information is expected to be of considerable interest and practical use for engineers and researchers involved in the wind-resistant design of super-tall buildings.

Mean wind loads on T-shaped angle transmission towers

  • Guohui Shen;Kanghui Han;Baoheng Li;Jianfeng Yao
    • Wind and Structures
    • /
    • v.38 no.5
    • /
    • pp.367-379
    • /
    • 2024
  • Compared with traditional transmission towers, T-shaped angle towers have long cross-arms and are specially used for ultrahigh-voltage direct-current (UHVDC) transmission. Nevertheless, the wind loads of T-shaped towers have not received much attention in previous studies. Consequently, a series of wind tunnel tests on the T-shaped towers featuring cross-arms of varying lengths were conducted using the high-frequency force balance (HFFB) technique. The test results reveal that the T-shaped tower's drag coefficients nearly remain constant at different testing velocities, demonstrating that Reynolds number effects are negligible in the test range of 1.26 × 104-2.30 × 104. The maximum values of the longitudinal base shear and torsion of the T-shaped tower are reached at 15° and 25° of wind incidence, respectively. In the yaw angle, the crosswind coefficients of the tower body are quite small, whereas those of the cross-arms are significant, and as a result, the assumption in some load codes (such as ASCE 74-2020, IEC 60826-2017 and EN 50341-1:2012) that the resultant force direction is the same as the wind direction may be inappropriate for the cross-arm situation. The fitting formulas for the wind load-distribution factors of the tower body and cross-arms are developed, respectively, which would greatly facilitate the determination of the wind loads on T-shaped angle towers.

Spatial and temporal distribution of Wind Resources over Korea (한반도 바람자원의 시공간적 분포)

  • Kim, Do-Woo;Byun, Hi-Ryong
    • Atmosphere
    • /
    • v.18 no.3
    • /
    • pp.171-182
    • /
    • 2008
  • In this study, we analyzed the spatial and temporal distribution of wind resources over Korea based on hourly observational data recorded over a period of 5 years from 457 stations belonging to Korea Meteorological Administration (KMA). The surface and 850 hPa wind data obtained from the Korea Local Analysis and Prediction System (KLAPS) and the Regional Data Assimilation and Prediction System (RDAPS) over a period of 1 year are used as supplementary data sources. Wind speed is generally high over seashores, mountains, and islands. In 62 (13.5%) stations, mean wind speeds for 5 years are greater than $3ms^{-1}$. The effects of seasonal wind, land-sea breeze, and mountain-valley winds on wind resources over Korea are evaluated as follows: First, wind is weak during summer, particularly over the Sobaek Mountains. However, over the coastal region of the Gyeongnam-province, strong southwesterly winds are observed during summer owing to monsoon currents. Second, the wind speed decreases during night-time, particularly over the west coast, where the direction of the land breeze is opposite to that of the large-scale westerlies. Third, winds are not always strong over seashores and highly elevated areas. The wind speed is weaker over the seashore of the Gyeonggi-province than over the other seashores. High wind speed has been observed only at 5 stations out of the 22 high-altitude stations. Detailed information on the wind resources conditions at the 21 stations (15 inland stations and 6 island stations) with high wind speed in Korea, such as the mean wind speed, frequency of wind speed available (WSA) for electricity generation, shape and scale parameters of Weibull distribution, constancy of wind direction, and wind power density (WPD), have also been provided. Among total stations in Korea, the best possible wind resources for electricity generation are available at Gosan in Jeju Island (mean wind speed: $7.77ms^{-1}$, WSA: 92.6%, WPD: $683.9Wm^{-2}$) and at Mt. Gudeok in Busan (mean wind speed: $5.66ms^{-1}$, WSA: 91.0%, WPD: $215.7Wm^{-2}$).

Experiment of the Shelter Effect of Porous Wind Fences base on the Wind Tunnel Test (풍동실험을 이용한 다공성 방풍팬스의 방풍성능실험)

  • You, Jang-Youl;Jeon, Jong-Gil;Kim, Young-Moon
    • Proceeding of KASS Symposium
    • /
    • 2006.05a
    • /
    • pp.91-101
    • /
    • 2006
  • We have conducted the study about the shelter effect against the wind by using the wind fence with various porosities and the measured distance from the wind fence, in three different types of it ; (Circle wind fence, Vertical wind fence, Horizontal wind fence) The shelter effect and turbulence characteristics of the selected wind barrier is throughly investigated by wind tunnel test. flow characteristics of velocities and turbulences behind wind fence were measured using hot-wire anemometer. we characterize the turbulence behind the wind fence by varying the porosity of 0 %, 20 %, 40%, and 60%, and the distances from the wind fence from 1 H to 9 H with maintaining the uniform flow velocity of 6 m/s. In addition, we investigated the overall characterization of the wind fence by measuring total of twenty eight points on the wind fence, which forms the lattice structure on it with seven points in lateral direction and four points in vertical direction. The results of analysis from the circle wind fence indicate that the degree of the turbulence is lowered and the velocity of the wind is decreased when the porosity of 40 % are used at the distance from 3 H to 9 H. On the other hand, the vertical, horizontal wind fence with the porosity of 20% is more advantageous at the distance of 2 H to 9 H. For the effectiveness of the wind fence depending on the position, the center part is the greatest and it decreases at the edges with 10 % to 30 % less than that of at the center.

  • PDF

Detached eddy simulation of flow around rectangular bodies with different aspect ratios

  • Lim, Hee Chang;Ohba, Masaaki
    • Wind and Structures
    • /
    • v.20 no.1
    • /
    • pp.37-58
    • /
    • 2015
  • As wind flows around a sharp-edged body, the resulting separated flow becomes complicated, with multiple separations and reattachments as well as vortex recirculation. This widespread and unpredictable phenomenon has long been studied academically as well as in engineering applications. In this study, the flow characteristics around rectangular prisms with five different aspect ratios were determined through wind tunnel experiments and a detached eddy simulation, that placed the objects in a simulated deep turbulent boundary layer at $Re=4.6{\times}10^4$. A series of rectangular prisms with the same height (h = 80 mm), different longitudinal lengths (l = 0.5h, h, and 2h), or different transverse widths (w = 0.5h, h, and 2h) were employed to observe the effects of the aspect ratio. Furthermore, five wind directions ($0^{\circ}$, $10^{\circ}$, $20^{\circ}$, $30^{\circ}$, and $45^{\circ}$) were selected to observe the effects of the wind direction. The simulated results of the surface pressure were compared to the wind tunnel experiment results and the existing results of previous papers. The vortex and spectrum were also analyzed to determine the detailed flow structure around the body. The paper also highlights the pressure distribution around the rectangular prisms with respect to the different aspect ratios. With an increasing transverse width, the surface suction pressure on the top and side surfaces becomes stronger. In addition, depending on the wind direction, the pressure coefficient experiences a large variation and can even change from a negative to a positive value on the side surface of the cube model.

Three-Dimensional Trajectory of a Fluid Particle in Air with Wind Effects and Air Resistance (공기 저항과 바람의 영향을 고려한 대기에서의 유체입자의 3차원 궤적)

  • 이동렬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.797-808
    • /
    • 2001
  • Three-dimensional trajectory of fluid particle is simulated by a particle motion, which is able to examine the influences of changes in the several parameters. To calculate the trajectory of a particle, the Runge-Kutta method was utilized. The use of a projectile of particles for the trajectory of liquid jet has been shown to be useful to estimate the influence of different operating parameters such as best particle diameter, density of liquid body, initial take-off velocity, wind velocity, cross wind velocity, take-off angle, and base angle for a released flow from the nozzle. The results give the trajectories of various types of particle of body and at different elevations, base angles, wind velocities and densities of liquid body. The trajectories in a vacuum show that air resistances decreases both the distance and the maximum height of a projectile, and also explain that the termination time is also reduced in air. In addition, the maximum distance in the x direction was obtained with take-off angles from 30 degrees to 45 degrees in still air and the projectile of particles was highly effected by wind and cross wind. Clearly, a particle has to be so positioned as to take the optimum possible advantage of the wind if the maximum distances is requested. The wind astern increased the maximum distances of x direction compared with the wind ahead. Finally, it is possible to optimize the design of pump by using these results.

  • PDF

The Analysis of a Wind Load on a Container Crane Using a Computation Fluid Dynamics

  • Kwon, Soon-Kyu;Lee, Seong-Wook;Han, Dong-Seop;Han, Geun-Jo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.325-328
    • /
    • 2006
  • This study analyzed the fluid state around a container crane according to a wind direction when a wind load was applied to a container crane. The container crane for this research is a model of a 50-ton class used broadly in the current ports. The dimension of an external fluid field is $500m{\times}200m$. This study considered the change of a wind velocity according to an altitude in a criterion of a wind velocity, 50m/s, applying a power series law. An incident angle applied to an interval of 30 degrees in $0^{\circ}C$ ${\sim}$ $180^{\circ}C$ and this study carried out a computation fluid dynamics using a CFX 10. In this study, we indicate the wind pressure and coefficient according to the height and section figure of each member. In addition, we suggest the wind load according to a wind direction.

  • PDF

Wind Speed Prediction in Complex Terrain Using a Commercial CFD Code (상용 CFD 프로그램을 이용한 복잡지형에서의 풍속 예측)

  • Woo, Jae-Kyoon;Kim, Hyeon-Gi;Paek, In-Su;Yoo, Neung-Soo;Nam, Yoon-Su
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.6
    • /
    • pp.8-22
    • /
    • 2011
  • Investigations on modeling methods of a CFD wind resource prediction program, WindSim for a ccurate predictions of wind speeds were performed with the field measurements. Meteorological Masts having heights of 40m and 50m were installed at two different sites in complex terrain. The wind speeds and direction were monitored from sensors installed on the masts and recorded for one year. Modeling parameters of WindSim input variables for accurate predictions of wind speeds were investigated by performing cross predictions of wind speeds at the masts using the measured data. Four parameters that most affect the wind speed prediction in WindSim including the size of a topographical map, cell sizes in x and y direction, height distribution factors, and the roughness lengths were studied to find out more suitable input parameters for better wind speed predictions. The parameters were then applied to WindSim to predict the wind speed of another location in complex terrain in Korea for validation. The predicted annual wind speeds were compared with the averaged measured data for one year from meteorological masts installed for this study, and the errors were within 6.9%. The results of the proposed practical study are believed to be very useful to give guidelines to wind engineers for more accurate prediction results and time-saving in predicting wind speed of complex terrain that will be used to predict annual energy production of a virtual wind farm in complex terrain.

Experimental research on design wind loads of a large air-cooling structure

  • Yazhou, Xu;Qianqian, Ren;Guoliang, Bai;Hongxing, Li
    • Wind and Structures
    • /
    • v.28 no.4
    • /
    • pp.215-224
    • /
    • 2019
  • Because of the particularity and complexity of direct air-cooling structures (ACS), wind parameters given in the general load codes are not suitable for the wind-resistant design. In order to investigate the wind loads of ACS, two 1/150 scaled three-span models were designed and fabricated, corresponding to a rigid model and an aero-elastic model, and wind tunnel tests were then carried out. The model used for testing the wind pressure distribution of the ACS was defined as the rigid model in this paper, and the stiffness of which was higher than that of the aero-elastic model. By testing the rigid model, the wind pressure distribution of the ACS model was studied, the shape coefficients of "A" shaped frame and windbreak walls, and the gust factor of the windbreak walls were determined. Through testing the aero-elastic model, the wind-induced dynamic responses of the ACS model was studied, and the wind vibration coefficients of ACS were determined based on the experimental displacement responses. The factors including wind direction angle and rotation of fan were taken into account in this test. The results indicated that the influence of running fans could be ignored in the structural design of ACS, and the wind direction angle had a certain effect on the parameters. Moreover, the shielding effect of windbreak walls induced that wind loads of the "A" shaped frame were all suction. Subsequently, based on the design formula of wind loads in accordance with the Chinese load code, the corresponding parameters were presented as a reference for wind-resistant design and wind load calculation of air-cooling structures.