• Title/Summary/Keyword: WILD BEES' DISTRIBUTION

Search Result 3, Processing Time 0.016 seconds

Estimating potential range shift of some wild bees in response to climate change scenarios in northwestern regions of Iran

  • Rahimi, Ehsan;Barghjelveh, Shahindokht;Dong, Pinliang
    • Journal of Ecology and Environment
    • /
    • v.45 no.3
    • /
    • pp.130-142
    • /
    • 2021
  • Background: Climate change is occurring rapidly around the world, and is predicted to have a large impact on biodiversity. Various studies have shown that climate change can alter the geographical distribution of wild bees. As climate change affects the species distribution and causes range shift, the degree of range shift and the quality of the habitats are becoming more important for securing the species diversity. In addition, those pollinator insects are contributing not only to shaping the natural ecosystem but also to increased crop production. The distributional and habitat quality changes of wild bees are of utmost importance in the climate change era. This study aims to investigate the impact of climate change on distributional and habitat quality changes of five wild bees in northwestern regions of Iran under two representative concentration pathway scenarios (RCP 4.5 and RCP 8.5). We used species distribution models to predict the potential range shift of these species in the year 2070. Result: The effects of climate change on different species are different, and the increase in temperature mainly expands the distribution ranges of wild bees, except for one species that is estimated to have a reduced potential range. Therefore, the increase in temperature would force wild bees to shift to higher latitudes. There was also significant uncertainty in the use of different models and the number of environmental layers employed in the modeling of habitat suitability. Conclusion: The increase in temperature caused the expansion of species distribution and wider areas would be available to the studied species in the future. However, not all of this possible range may include high-quality habitats, and wild bees may limit their niche to suitable habitats. On the other hand, the movement of species to higher latitudes will cause a mismatch between farms and suitable areas for wild bees, and as a result, farmers will face a shortage of pollination from wild bees. We suggest that farmers in these areas be aware of the effects of climate change on agricultural production and consider the use of managed bees in the future.

Nationwide Spatiotemporal Distribution of Some Selected Aculeata (Hymenoptera) in South Korea, based on Materials Collected with Malaise Trap in 2017 and 2018 (2017~2018년 말레이즈 트랩을 이용한 남한 내 야생벌(벌목: 벌아목)의 시·공간별 출현 및 분포 현황)

  • Yu, Dong Su;Kwon, Oh-Chang;Kim, Honggie;Kim, Jeong-Kyu
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.6
    • /
    • pp.654-663
    • /
    • 2019
  • Pollinators, which are important organisms in pollination ecology, have been highly valued for their economic contributions to crop production in the agricultural and biotechnology industries. As the production of over 70% of farm products, such as fruits, are mediated by pollinators, bees are important and useful insects to humans. However, pollinators are now seriously threatened with their numbers decreasing annually and their biodiversity being negatively affected by ongoing climate change, misuse of land, change of geographical features, and use of pesticides to increase agricultural production. Thus, surveys and analyses of the emergence and distribution of wild bees are important for conservation and management practices designed to help them continue to play their ecological and agricultural roles despite negative pressures, such as climate and topography changes. We surveyed pollinators, especially wild bees, at 51 research sites in South Korea every two to four weeks for two years from 2017 to 2018 using ez-Malaise traps and analyzed the temporal and spatial distribution of wild bees. The bees showed a normal temporal distribution that peaked between July and August. The bees' working period lasted until November. The spatial distribution of wild bees showed a significant correlation with latitude, and different bees were identified depending on the local habitat. No significant correlation was found for longitudinal distribution with regression analysis (p > 0.05), but this study identified locally specific wild bees. Although we could not predict significant distribution according to longitude, Further studies should be able to analyze the difference in the distribution of wild bees according to the climate, topography, and land-use patterns by humans. The results of this study provide basic information on pollinator distribution, which can be useful in agriculture and for the conservation and management of biodiversity in South Korean pollination ecology.

Effects of Climatic Factors on the Nationwide Distribution of Wild Aculeata (Insecta: Hymenoptera) (전국 야생 벌목 분포에 대한 기후요인 영향 연구)

  • Yu, Dong-Su;Kwon, Oh-Chang;Shin, Man-Seok;Kim, Jung-Kyu;Lee, Sang-Hun
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.3
    • /
    • pp.303-317
    • /
    • 2022
  • Climate change caused by increased greenhouse gas emissions can alter the natural ecosystem, including the pollination ecosystem and agricultural ecology, which are ecological interactions between potted insects and plants. Many studies have reported that populations of wild bees, including bees and wasps (BW), which are the key pollinators, have gradually declined due to climate change, leading to adverse impacts on overall biodiversity, ultimately with agribusinesses and the life cycle of flowering plants. Therefore, we could infer that the rising temperature in Korean Peninsula (South Korea) due to global warming has led to climate change and influenced the wild bee's ecosystem. In this study, we surveyed the distributional pattern of BW (Superfamily: Apoidea, Vespoidea, and Chrysidoidea) at 51 sites from 2017 (37 sites) to 2018 (14 sites) to examine the effects of climatic factors on the nationwide distribution of BW in South Korea. Previous literature has confirmed that their distribution according to forest climate zones is significantly correlated with mean and accumulative temperatures. Based on the result, we predicted the effects of future climate changes on the BW distribution that appeared throughout South Korea and the species that appeared in specific climate zones using Shared Socioeconomic Pathways (SSPs). The distributions of wild BW predicted by the SSP scenarios 2-4.5 and 5-8.5 according to the BIOMOD species distribution model revealed that common and endemic species will shift northward from the current habitat distribution by 2050 and 2100, respectively. Our study implies that climate change and its detrimental effect on the ecosystem is ongoing as the BW distribution in South Korea can change, causing the change in the ecosystem in the Korean Peninsula. Therefore, immediate efforts to mitigate greenhouse gas emissions are warranted. We hope the findings of this study can inspire further research on the effects of climate change on pollination services and serve as the reference for making agricultural policy and BW conservation strategy