• Title/Summary/Keyword: WI-Fi

Search Result 998, Processing Time 0.027 seconds

Drug Bottle Delivery Robot Capable of Smartphone-Based Control and Image Process and Combining Wheel and Quadruped (스마트폰 제어 및 영상처리를 수행하는 바퀴와 4족을 결합한 약병 전송 로봇)

  • Lee, Sang Young;Kim, Hyun Su;Kim, Young Long;Hong, Seok Ho;Kim, Dong Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.4
    • /
    • pp.569-579
    • /
    • 2013
  • Robot control and image processing using a smartphone and Wi-Fi communication is introduced. The robot has a wheel and quadruped mechanism that is transformed according to the environment and is mainly used for drug bottle delivery. The captured image on the camera is transmitted to the smartphone in the form of stream data, and the image data is processed in the smartphone to enable the robot to identify an object and to control the robot itself. A network was constructed so that only image data from the stream data was used, and an image processing scheme to identify the drug bottle and deliver it to a person using a robot arm is also presented. In this study, image processing techniques and algorithms were purely implemented on a smartphone with considerable computational power and multiple functions rather than a computer, which contributes to the intelligence and miniaturization of the robot system.

Development of Android-Based Photogrammetric Unmanned Aerial Vehicle System (안드로이드 기반 무인항공 사진측량 시스템 개발)

  • Park, Jinwoo;Shin, Dongyoon;Choi, Chuluong;Jeong, Hohyun
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.3
    • /
    • pp.215-226
    • /
    • 2015
  • Normally, aero photography using UAV uses about 430 MHz bandwidth radio frequency (RF) modem and navigates and remotely controls through the connection between UAV and ground control system. When using the exhausting method, it has communication range of 1-2 km with frequent cross line and since wireless communication sends information using radio wave as a carrier, it has 10 mW of signal strength limitation which gave restraints on life my distance communication. The purpose of research is to use communication technologies such as long-term evolution (LTE) of smart camera, Bluetooth, Wi-Fi and other communication modules and cameras that can transfer data to design and develop automatic shooting system that acquires images to UAV at the necessary locations. We conclude that the android based UAV filming and communication module system can not only film images with just one smart camera but also connects UAV system and ground control system together and also able to obtain real-time 3D location information and 3D position information using UAV system, GPS, a gyroscope, an accelerometer, and magnetic measuring sensor which will allow us to use real-time position of the UAV and correction work through aerial triangulation.

A Practical Quality Model for Evaluation of Mobile Services Based on Mobile Internet Device (모바일 인터넷 장비에 기반한 모바일 서비스 평가를 위한 실용적인 품질모델)

  • Oh, Sang-Hun;La, Hyun-Jung;Kim, Soo-Dong
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.5
    • /
    • pp.341-353
    • /
    • 2010
  • Mobile Internet Device (MID) allows users to flexibly use various forms of wireless internet such as Wi-Fi, GSM, CDMA, and 3G. Using such Internet, MID users can utilize application services. MID usage is expected to grow due to the benefits of portability, Internet accessibility, and other convenience. However, it has resource constraints such as limited CPU power, small memory size, limited battery life, and small screen size. Consequently, MIDs are not capable to hold large-sized complex applications and to process a large amount of data in memory. An effective solution to remedy these limitations is to develop cloud services for the required application functionality, to deploy them on the server side, and to let MID users access the services through internet. A major concern on running cloud services for MIDs is the potential problems with low Quality of Service (QoS) due to the characteristics of MIDs. Even measuring the QoS of such services is more technically challenging than conventional quality measurements. In this paper, we first identify the characteristics of MIDs and cloud services for MIDs. Based on these observations, we derive a number of quality attributes and their metrics for measuring QoS of mobile services. A case study of applying the proposed quality model is presented to show its effectiveness and applicability.

Analysis on the EMC evaluating method for applying wireless communications in NPP (원전 내 무선통신 적용에 대한 전자파 적합성 평가방법 분석)

  • Kang, SeungSeok;Lim, Tae Heung;Choo, Jaeyul;Kim, HyungTae;Kim, DaeHee;Byun, Gangil;Park, Jong Eon;Lee, Jun-Yong;Choo, Hosung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.12
    • /
    • pp.2221-2231
    • /
    • 2017
  • In this paper, we surveyed previous cases, network protocols (such as Wi-Fi, Zigbee, Z-wave, and WirelessHart) and propagation characteristics on the application of maintaining equipments for instrumentation and control (I&C) using wireless communication techniques inside the nuclear power plant (NPP). In addition, we compared and analyzed the difference of detailed regulations with respect to the electromagnetic interference (EMI) and radio frequency interference (RFI) in the Regulatory Guide 1.180 rev. 1 (RG. 1.180) for adopting the wireless communication techniques inside the NPP, and other regulations, such as MIL-STD 461E and IEC 61000-4, that are recognized in the KINS/RG-N03.09 (Rev. 2). Furthermore, we investigated evaluating factors about electromagnetic properties by considering indoor environments, wave scattering, shielding effectiveness, and the indoor wave attenuation model that were not included in the current electromagnetic compatibility regulation.

Development of Android Smartphone App for Camera-based Remote Monitoring System (카메라 기반의 원격 모니터링 시스템을 위한 안드로이드 스마트폰 앱 개발)

  • Lee, Seong-Kyu;Kim, Jin-Soo;Kim, Young-Seup;Choi, Chul-Uong
    • Spatial Information Research
    • /
    • v.19 no.5
    • /
    • pp.87-96
    • /
    • 2011
  • Recently mobile users can access to internet using smart phone at any place and any time, through which they can search and share information. In addition, as the sensors with high-tech functions become cheaper and miniaturized along with the development of MEMS (micro-electo mechanical systems) technology, the extent to utilize smart phone is increasing. Smart phone is equipped with various sensors such as high-resolution camera, GPS, gyroscope and magnetic sensor, which is an appropriate system configuration for remote monitoring research using camera. The remote monitoring system requires camera for video and internet network to send video, for which it has a limitation that it is influenced by the monitoring location. This study is aimed to design and develop the monitoring app. which can be remotely monitored using smart phone technology. The developed monitoring app was designed to take images of ROI (region of interest) within the specified time and to automatically send the images to the server. The developed app. is also possible to be remotely controlled by SMS (short message service). The monitoring proposed in this study can take high-resolution images using CMOS built in the smart phone and send the images and information to the server automatically at any place and any time using 3G and Wi-Fi networks.

Low-Cost Remote Power-Quality-Failure Monitoring System using Android APP and MCU (안드로이드 앱과 MCU를 이용한 저가형 원격 전원품질이상 감시 시스템)

  • Lim, Ho-Kyoun;Kim, Seo-Hwi;Lee, Seung-Hyeon;Choe, Sangho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.9
    • /
    • pp.144-155
    • /
    • 2013
  • This paper presents a low-cost remote power-quality-failure monitoring system (RPMS) using Android App and TI MCU (micro-controller unit), which is appliable to a micro-grid. The designed RPMS testbed consists of smart nodes, a server, and Android APPs. Especially, the C2000-series MCU-based RPMS smart node that is low-cost compared to existing monitoring systems has both a signal processing function for power signal processing and a data transmission function for power-quality monitoring data transmission. The signal processing function implements both a wavelet-based power failure detection algorithm including sag, swell, and interruption, and a FFT-based power failure detection algorithm including harmonics such that reliable and real-time power quality monitoring is guaranteed. The data transmission function implements a low-complexity RPMS transmission protocol and defines a simple data format (msg_Diag) for power monitoring message transmission. We may watch the monitoring data in real time both at a server and Android phone Apps connected to the WiFi network (or WAN). We use RS-232 (or Bluetooth) as the wired (or wireless) communication media between a server and nodes. We program the RPMS power-quality-failure monitoring algorithm using C language in the CCS (Code Composer Studio) 3.3 environment.

A Study On Low-cost LPR(License Plate Recognition) System Based On Smart Cam System using Android (안드로이드 기반 스마트 캠 방식의 저가형 자동차 번호판 인식 시스템 구현에 관한 연구)

  • Lee, Hee-Yeol;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.471-477
    • /
    • 2014
  • In this paper, we propose a low-cost license plate recognition system based on smart cam system using Android. The proposed system consists of a portable device and server. Potable device Hardware consists of ARM Cortex-A9 (S5PV210) processor control unit, a power supply device, wired and wireless communication, input/output unit. We develope Linux kernel and dedicated device driver for WiFi module and camera. The license plate recognition algorithm is consisted of setting candidate plates areas with canny edge detector, extracting license plate number with Labeling, recognizing with template matching, etc. The number that is recognized by the device is transmitted to the remote server via the user mobile phone, and the server re-transfer the vehicle information in the database to the portable device. To verify the utility of the proposed system, user photographs the license plate of any vehicle in the natural environment. Confirming the recognition result, the recognition rate was 95%. The proposed system was suitable for low cost portable license plate recognition device, it enabled the stability of the system when used long time by using the Android operating system.

Protocol Design for Fire Receiver­based Fire Detection Robots (화재수신기 기반의 화재감시로봇을 위한 프로토콜 설계)

  • Lim, Jong-Cheon;Lee, Jae-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.4
    • /
    • pp.452-459
    • /
    • 2018
  • Conventional fire fighting robots are controlled by a remote control to monitor the fire scene or to suppress the fire. However, this method has a problem that it takes a long time to prepare robot and input it to fire place in the golden time after the fire, so that it can not sufficiently serve as a fire fighting robot. Using the autonomous driving fire monitoring robot, when a fire signal is generated, in conjunction with a fire receiver a moving robot takes a video of the fire scene and delivers the image to the fire department, so that the fire fighter can decide if it is real fire or not. Thereby it is possible to prevent a sudden spread of an accident by providing a quick judgment opportunity and at the same time suppressing the fire early. In this paper, we propose an architecture of the autonomous mobile fire monitoring robot and the communication protocol required for the robot to work with the fire receiver. A communication protocol is designed to control multiple fire monitoring robots in real time, and a communication with a fire receiver is designed as a hierarchical network to serve as an interface of an Ethernet network using wireless Wi-Fi. The fire monitoring robot and the wireless communication of the fire receiving period are implemented and the effectiveness of the operation is confirmed through the field test.

Smart meter data transmission device and power IT system using LTE and IoT technologies (LTE와 IoT 기술을 이용한 스마트미터 데이터 전송장치와 전력 IT 시스템)

  • Kang, Ki-Beom;Kim, Hong-Su;Jwa, Jeong-Woo;Kim, Ho-Chan;Kang, Min-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.117-124
    • /
    • 2017
  • A Smart Grid is a system that can efficiently use energy by exchanging real-time information in both directions between a consumer and a power supplier using ICT technology on an existing power network. DR(Demand response) is an arrangement in which electricity users can sell the electricity they save to the electricity market when the price of electricity is high or the power system is crisis. In this study, we developed a power meter data transmission device and power IT system that measure the demand information in real-time using a smart meter and transmit it to a cloud server. The power meter data transmission device developed in this study uses alight sensor connected to a Raspberry Pi 3 to measure the number of blinking lamps on the KEPCO meter per unit of power, in order to provide reliable data without any measurement errors with respect to the KEPCO power data. The power measurement data transmission device uses the standard communication protocol, OpenADR 2.0b. The measured data is transmitted to the power IT system, which consists of the VEN, VTN, and calculation program, via the LTE WiFi communication network and stored in its MySQL DB. The developed power measurement data transmission device issues a power supply instruction and performs a peak reduction DR when a power system crisis occurs. The developed power meter data transmission device has the advantage of allowing the user to adjust it every 1 minute, where as the existing smart metering time is fixed at once every 15 minutes.

Compact 0th Order Antenna for 2.4 GHz ISM Band (2.4 GHz ISM대역용 소형 0차 공진 안테나)

  • Do, Sang-In;Yoo, Jin-Ha;Lee, Young-Soon
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.1
    • /
    • pp.60-65
    • /
    • 2015
  • In the present study, compact $0^{th}$ order resonant antenna for 2.4 GHz ISM frequency band is newly proposed. In case of wireless communication systems such as wi-fi, bluetooth and Zigbee, antennas with omni-directional radiation pattern are necessary because of the demands for uniformly received electric field strength without variation for direction. It is well-known that $0^{th}$ order resonant antennas are not only advantageous for miniaturization but also have advantage of maintaining omni-directional radiation pattern. The proposed antenna is composed of two-element array in which the size of unit element should be smaller than ${\lambda}/4$ correspondent to the resonant length of typical monopole antennas The proposed antenna which is placed at middle and upper side of PCB with $50{\times}50mm^2$ size is designed and fabricated within limited space of $8{\times}5mm^2$. The measured impedance bandwidth ($S_{11}{\leq}-10dB$) is about 100 MHz (2.4~2.5 GHz) which corresponds to quite wide bandwidth in comparison with the antenna size, and also the measured peak gain over the passband is more than 3 dBi which is thought to be slightly wider than the other $0^{th}$ order resonant antenna.