• Title/Summary/Keyword: WH

Search Result 855, Processing Time 0.032 seconds

Performance Evaluation and Optimization of Hydrogen Liquefaction Process Using the Liquid Air for Pre-Cooling (액화공기(Liquid Air) 예냉기반 수소액화공정 성능 해석 및 최적화)

  • PARK, SUNGHO;AHN, JUNKEON;RYU, JUYEOL;KO, AREUM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.6
    • /
    • pp.490-498
    • /
    • 2019
  • The intermittent electric power supply of renewable energy can have extremely negative effect on power grid, so long-term and large-scale storage for energy released from renewable energy source is required for ensuring a stable supply of electric power. Power to gas which can convert and store the surplus electric power as hydrogen through water electrolysis is being actively studied in response to increasing supply of renewable energy. In this paper, we proposed the novel concept of hydrogen liquefaction process combined with pre-cooling process using the liquid air. It is that hydrogen converted from surplus electric power of renewable energy was liquefied through the hydrogen liquefaction process and vaporization heat of liquid hydrogen was conversely recovered to liquid air from ambient air. Moreover, Comparisons of specific energy consumption (kWh/kg) saved for using the liquid air pre-cooling was quantitatively conducted through the performance analysis. Consequently, about 12% of specific energy consumption of hydrogen liquefaction process was reduced with introducing liquid air for pre-cooling and optimal design point of helium Brayton cycle was identified by sensitivity analysis on change of compression/expansion ratio.

The Experimental Study on Removal of Sulfur Dioxide and Nitrogen Oxide Using a Nano-Pulse Corona Discharger at Different Temperatures (나노펄스 코로나 방전의 온도 변화에 따른 이산화황 및 일산화질소 제거에 관한 실험적 연구)

  • Han, Bang-Woo;Kim, Hak-Joon;Kim, Yong-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.4
    • /
    • pp.387-394
    • /
    • 2011
  • A study on the removal of sulfur dioxide and nitrogen oxide was carried out using a non-thermal nano-pulse corona discharger at different gas temperatures. Pulse voltage with a high voltage of 50 kV, a pulse rising time of about 100 ns, a full width at half maximum of about 500 ns and a frequency of 1 kHz was applied to a wire-cylinder corona reactor. Ammonia and propylene gases were added into the corona reactor as additives with a static mixer. Ammonia addition had less effect on $SO_2$ reduction at the higher temperature because of the retardation of ammonium sulfate formation. However, propylene addition enhanced NO reduction at higher temperature due to increased gas mixture. $SO_2$ was further removed at the mixed $SO_2$ and NO gas due to increased $NO_2$ by the conversion of NO. The addition of ammonia and propylene gases was more highly dominant for the removal of sulfur dioxide compared to the sole pulse corona without the additives. However, the specific energy density per unit concentration of pulse corona as well as propylene additive was an important factor to remove NO gas. Therefore, the specific energy density per unit concentration of 0.04 Wh/($m^3{\cdot}ppm$) was necessary for the NO removal of more than 80% with the concentration ratio of 2.0 for propylene and NO. Hydrogen peroxide was another alternative additive to remove both $SO_2$ and NO in the nano-pulse corona discharger.

Air Temperature Differences in Areas with High-rise Buildings (초고층빌딩지역의 기온차)

  • Jin, Wen-Cheng;Lee, Kyoo-Seock
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.1
    • /
    • pp.12-22
    • /
    • 2012
  • In Seoul, skyscrapers are built in commercial zones known as residential-commercial complexes, which cause such environmental problems as urban heat islands(UHI) and air pollution. To investigate air temperature differences in areas near skyscrapers at Gangnam-gu, Seoul, South Korea, fixed air temperature observation and traverse observations were performed from March 16, 2008 to March 15, 2009. The annual mean air temperature at Tower Palace(TPL) was higher than that at Sookmyung Girls' High School(SMG) by $0.7^{\circ}C$, although the distance between the two observation positions is only 200m. The number of tropical nights at TPL was 13, while that at SMG was 5. The higher air temperature at TPL was due to a significantly lower sky view factor(SVF), which prevented long-wave radiation from emitting into the sky. The highest air temperature increases near TPL occurred on summer nights because of the high-electricity consumption value of $70.22Wh/m^2$ for the TPL block in August due to air conditioning for cooling. It is concluded that the warm air pocket centered on TPL.

Public Preferences for Replacing Hydro-Electricity Generation with Coal-Fired Power Generation (석탄화력 발전 대비 수력 발전에 대한 국민 선호도 분석)

  • Choi, Hyo-Yeon;Ryu, Mun-Hyun;Yoo, Seung-Hoon
    • Journal of Energy Engineering
    • /
    • v.24 no.1
    • /
    • pp.164-171
    • /
    • 2015
  • Although coal-fired power generation has played a role as base load unit, it has incurred various social costs in the process of generating and providing electricity. It is necessary to extend the proportion of low-carbon power generations, and reduce the ratio of coal-fired power generation to cope with global climate changes. This study, therefore, attempts to estimate the public's willingness-to-pay (WTP) for substitution of supplied electricity from hydro-electricity generation, a representative renewable energy, for coal-fired power generation. To this end, we apply the contingent valuation (CV) method, widely used technique when valuing non-market goods, to elicit the public's WTP. In addition, a spike model is employed to consider zero WTPs. After the empirical analysis with 1,000 households CV survey data, the results show that mean household's WTP for replacing supplied electricity from hydro-electricity generation with coal-fired power generation is estimated to be about 54 KRW per kWh. The results of this study are expected to contribute to determining energy-mix and provide benefit information of hydro-electricity generation.

LandAnalysis of Effective Depth of Dynamic Replacement Method (동치환공법의 적정심도 결정에 관한 연구)

  • Kim, Sung-Hwan
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.3
    • /
    • pp.305-314
    • /
    • 2018
  • Purpose: Dynamic Replacement Method currently lacks of sufficient research, implementation cases, and case histories, compared with other comparable methods, such as Dynamic Compaction Method. Method: In this study, for Dynamic Replacement Method, the effective improvement depth and improved strength were analyzed for silty clayey soils. Results: Testbed test was performed to verify the effectiveness of Dynamic Replacement Method followed by the main dynamic replacement implementation on real construction site. Conclusion: A The effects of changes of soft ground depth, dynamic replacements' diameter, depth, spacing, and applied energy on dynamic replacement efficiency in silty clays were assessed and the followings were found: Empirical coefficient for soil $n_R$ of Dynamic Replacement Method was within the range of 0.14~0.32 and its ${\sqrt{WH}}$ is recommended to be 1.25~2.5 times of those from Dynamic Compaction Method.

Economic Feasibility Analysis for Development of Small Hydropower Using Agricultural Reservoirs (농업용 저수지의 소수력 개발을 위한 경제성 분석)

  • Woo, Jae-Yeoul;Kim, Jin-Soo;Jang, Hoon;Kim, Young-Hyeon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.2
    • /
    • pp.53-60
    • /
    • 2011
  • This study was conducted to investigate the effect of hydropower factors (watershed, gross head), operation ratio and unit electricity cost on the benefit-cost ratio (B/C ratio) of small hydropower using agricultural reservoirs. The equation of B/C ratio was expressed as a function of watershed area, gross head, operation ratio and unit electricity cost. The benefit increased with watershed area, gross head and unit electricity cost, while the cost increased with watershed area and gross head but decreased with operation ratio. The B/C ratio increased with watershed area, gross head, operation ratio and unit electricity cost. While the effect of gross head on the B/C ratio decreased with watershed area, the effect of operation ratio and unit electricity cost on the B/C ratio increased with watershed area. The operation ratio is an important factor to affect the B/C ratio and therefore we need to develop hydropower for the heightened dams to expect high operation ratio due to continuous water release. The unit electricity cost is also an important factor to affect the B/C ratio and the B/C ratio was always below 1 unless unit electricity cost is over 60 Won/kWh under given conditions. The reservoirs with economic feasibility for small hydropower development were three in 21 when the equation of B/C ratio was appled to the study reservoirs. The results can be used to choose the appropriate reservoir with economic feasibility for development of small hydropower.

Development of High Performance Battery for Navigation Aid's Power (항로표지(등부표) 전원공급용 고성능 축전지 개발)

  • Yoon, Seok-Jun;Cho, Myung-Hun;Lee, Dae-Pyo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2009.06a
    • /
    • pp.435-438
    • /
    • 2009
  • A navigation aid buoy is a kind of safety facility for maritime navigation with a purpose of leading the vessels for navigating, docking and sail off. An advanced rechargeable battery is required for stable power supply for navigation aid buoy as the high magnitude LED lamps, real time location/control for navigation aids and e-Navigation support systems with maritime climate observation equipments have recently been deployed. This study is focused on the lithium battery, especially lithium polymer battery which is believed to be safer than the other types of batteries. The lithium polymer battery reviewed in this study is designed with $LiFePO_4$-based cathode, which has superior safety features to the oxide-based cathodes. Besides, a 3.6kWh battery pack has been built with the above-mentioned unit cells for the purpose of comparative research with lead acid battery system.

  • PDF

Electrochemical Performance of Composite Active Materials (Activated Carbon + $LiCoO_2$) Electrode (혼합 활물질 (활성탄소 + $LiCoO_2$) 전극의 전기화학적 특성)

  • Kim, Ick-Jun;Jeon, Min-Jae;Yang, Sun-He;Moon, Seoung-In;Kim, Hyun-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.497-497
    • /
    • 2007
  • 활성탄소를 양쪽 전극에 사용하는 전기이중층 커패시터는 고출력 특성과 반영구적인 cycle 수명인 장점을 가지고 있는 반면, 단위 중랑 또는 부피 당 용량이 작아 메모리 백업용 보조전원으로서의 활용에 그치고 있다. 이를 보완하기 위하여 최근에는 앙쪽의 전극에 충방전 메카니즘을 달리하는 비대칭 전극 설계기술을 기반으로 하는 하이브리드 커패시터가 개발되었고, 에너지밀도로서는 유기계 전해액에서 약 15-20 Wh/kg를 가지는 것으로 보고되고 있다. 본 연구메서는 양극의 활성탄소에 비용량이 상대적으로 큰 LiCo02 분말을 혼합한 하이브리드 전극의 제조 및 전기화학적 특성을 조사하였다. 이때 $LiCoO_2$ 분말의 혼합 종량비의 영향에 의한 전극 부피 당 용량(mAh/cc)의 변화와 $LiCoO_2$ 분말의 입자 크기에 의한 하이브리드 전극의 출력 특성을 조사하였다. $LiCoO_2$ 분말은 불밀을 이용하여 입자크기를 조절하였고, 각각의 입자크기를 가지는 LiCoO2 분말을 활성탄소와 함께 혼합하여 혼합 활물질 : Carbon black : PTFE의 중량비가 90 : 5 : 5가 되도록 sheet 전극을 제조하였다. 제조한 전극을 양극에, Li foil을 음극에, 전해액을 LiPF6 in EC DMC를 사용하여 코인셀을 제조하고 전기화학적 특성은 MACCOR 충방전기를, AC 저항은 AC impedance를 각각 사용하여 평가하였다. 활성탄소에 $LiCoO_2$ 분말의 첨가 중량비가 증가할수록 전극 부피 당 용량은 증가하였으나, 원료 상태의 $LiCoO_2$ 분말의 첨가에서는 코인셀의 전극 저항은 첨가 중량에 따라 단순 증가하였다. 그러나 미세 $LiCoO_2$ 분말을 첨가할 경우, 20%의 첨가에서 전극 저항은 활성탄소 만을 사용한 전극과 동등한 전극저항을 나타내고 충방전 cycle 특성도 개선되는 것을 확인하였다.

  • PDF

Power density and fouling propensity of pretreatments in SWRO/PRO hybrid system (전처리기술별 전력밀도 및 파울링에 관한 연구)

  • Koo, Jae-Wuk;Nam, Sookhyun;Sim, Jinwoo;Kim, Eunju;Choi, Yongjun;Hwang, Tae-Mun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.6
    • /
    • pp.755-764
    • /
    • 2016
  • Pressure retarded osmosis (PRO) processes can be implemented on a number of water types, using different technologies and achieving various power outcomes. In this study, Sewage facility effluent was used for feed solution of PRO and synthetic NaCl water for draw solution. This study was conducted to investigate effect of water quality of pretreatment on power density and flux decline in PRO process. The results show that organic and particulate foulants have to be removed for more stable operation. Flourescence technique with EEM enables to investigate the chemical properties of aquatic organic matter by extracting spectral information. Humic/fulvic matters and soluble microbial by-products were analyzed as the most affecting factors on the PRO performance. As a result of analyzing the whole system based on the energy consumption of the unit process, specific energy consumption(SEC) of the applicable technology for PRO pre-treatment should be about $0.2kWh/m^3$ or less.

Feasibility Study of small hydropower at a municipal wastewater treatment plant by model analysis (모델분석을 통한 하수처리장 소수력발전 경제성 평가)

  • Kim, Won-Kyoung;Kim, Dong-Soo;Kang, Ji-Hoon;Chae, Kyu-Jung;Kim, Jung-Yeon;Lee, Chul-Hyung;Park, Wan-Soon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.216-220
    • /
    • 2012
  • 본 연구는 경기도 용인시에 위치한 공공하수처리장을 대상으로 소수력발전 성능특성을 예측하고 경제성을 분석하여 소수력발전소의 건설타당성을 제시하였다. 방류구에서의 수준측량 조사에 따르면 실제 유효 낙차는 4.3m로 나타났다. 최근 5년간 방류량 자료를 살펴보면 일평균 실제 처리량은 약 $30,000m^3/day$로 나타났으며, 우수 유입과 물 사용량이 증가하는 여름 및 가을에 처리량이 증가하였다. 설계유량은 유량변화에 따른 누적 확률밀도와 유량지속곡선에 근거해 산정하였으며, 시간빈도로 보았을 때 17%의 유량이 지속되는 $0.35m^3/sec$가 설계유량으로 나타났다. 예상되는 수차 발전용량은 11kW급이며, 시스템 가동율은 74%, 그리고 계통선에 송출될 수 있는 연 전력생산량은 71.3MWh로 나타났다. 경제성 평가는 신재생에너지 경제성 분석 도구인 RETScreen 프로그램을 사용하여 B/C ratio, IRR, 개발투자비 등의 경제성 평가지표들을 산정하였다. 편익(Benefit) 산정시 전력기준단가는 133.67원/kWh, 할인율 7%를 적용하였으며, 비용(Cost) 산정시 유지관리비는 초기 건설비의 1%, 사용연한 30년을 적용하였다. 경제성 분석결과 기흥레스피아의 소수력발전소 건설시 초기 건설공사비가 $165,000 일 때, B/C 1.0, NPV $3,534, 투자회수기간 15.1년으로 산정되었고 따라서 초기 건설비용이 $165,000 이하일 때 가장 경제적인 것으로 파악되었다.

  • PDF