• Title/Summary/Keyword: WGS catalyst

Search Result 51, Processing Time 0.025 seconds

An Optimization of Synthesis Method for High-temperature Water-gas Shift Reaction over Cu-CeO2-MgO Catalyst (고온수성가스전이반응 적용을 위한 Cu-CeO2-MgO 촉매의 제조방법 최적화)

  • I-Jeong Jeon;Chang-Hyeon Kim;Jae-Oh Shim
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.321-326
    • /
    • 2023
  • Recently, there has been a growing interest in clean hydrogen energy that does not emit carbon dioxide during combustion due to the increasing focus on carbon neutral. Research related to hydrogen production continues, and in this study, we applied waste-derived synthesis gas to the water-gas shift reaction to simultaneously treat waste and produce high-purity hydrogen. To enhance catalytic activity in the high-temperature water-gas shift (HT-WGS) reaction, magnesium was used as a support material alongside cerium. Cu-CeO2-MgO catalysts were synthesized, with copper acting as the active component for the HT-WGS reaction. A study on the catalytic activity based on the preparation method was conducted, and the Cu-CeO2-MgO catalyst prepared by impregnation method exhibited the highest activity in the HT-WGS reaction. The observed superior performance of the Cu-CeO2-MgO catalyst prepared through the impregnation method can be attributed to its significantly higher oxygen storage capacity and amount of active Cu species.

Noble metal catalysts for Water Gas Shift reaction (귀금속계열 WGS 촉매 연구)

  • Lim, Sung-Kwang;Bae, Joong-Myeon;Kim, Sun-Young
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2228-2231
    • /
    • 2007
  • Water gas shift reactor in fuel processing is an important part that converts carbon monoxide into hydrogen. Fuel processing system for PEMFC usually has two stages of WGS reactors, which are high temperature and low temperature shifter. In this study we prepared noble metal catalysts and compared their performances with that of a commercial iron chromium oxide catalyst. Noble metal catalysts and the commercial catalyst showed quite different temperature dependence of carbon monoxide conversion. The conversion of carbon monoxide at the commercial catalyst was very low at medium temperature(${\sim}300^{\circ}C$) and increased rapidly as temperature increased while the conversion at noble metal catalysts was high in the medium temperature range and decreased as temperature increased, which is thermodynamically expected. Their characteristics agreed well with the literature published, and we are accomplishing further study for improvement of the noble metal catalysts.

  • PDF

Catalytic Characteristic of Water-Treated Cu/ZnO/MgO/Al2O3 Catalyst for LT-WGS Reaction (LT-WGS 반응을 위한 Cu/ZnO/MgO/Al2O3 촉매의 수분처리에 의한 촉매 특성 분석)

  • PARK, JIHYE;BAEK, JEONG HUN;JO, GWANG HUI;RASHEED, HAROON UR;YI, KWANG BOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.2
    • /
    • pp.95-102
    • /
    • 2019
  • In order to investigate the effect of water treatment on activity of WGS catalyst, $Cu/ZnO/MgO/Al_2O_3$ (CZMA) catalysts were synthesized by co-precipitation method. The prepared catalysts were water-treated at two different temperature (250, $350^{\circ}C$). Synthesized catalysts were characterized by using BET, SEM, $N_2O$ chemisorption, XRD, $H_2-TPR$ and XPS analysis. The catalytic activity tests were carried out at a GHSV of $28,000h^{-1}$ and a temperature range of $180-320^{\circ}C$. The reduction temperature decreased with water treatment and CZMA_250 catalyst showed the lowest reduction temperature and retained a large amount of $Cu^+$. Water-treated catalysts showed increased reactivity compared to untreated catalyst and the CZMA_250 catalyst showed higher catalytic activity on WGS reaction.

A Study on Na effect of Pt-Na/Ce(1-x)Zr(x)O2 Catalyst Structure for WGS Reaction (WGS 반응에서 Pt-Na/Ce(1-x)Zr(x)O2 촉매의 구조에 따른 Na 영향에 대한 연구)

  • Shim, Jae-Oh;Jeong, Dae-Woon;Jang, Won-Jun;Roh, Hyun-Seog
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.6
    • /
    • pp.654-659
    • /
    • 2012
  • The interest in water gas shift (WGS) reaction has grown significantly, as a result of the recent advances in fuel cell technology and the need to develop small-scale fuel processors. Recently, researchers have tried to overcome the disadvantages of the commercial WGS catalysts. As a consequence, supported Pt catalysts have attracted a lot of researchers due to high activity and stability for WGS at low temperatures. In this study, $Pt-Na/Ce_{(1-x)}Zr_{(x)}O_2$ catalysts with various Ce/Zr ratio have been applied to WGS at a gas hourly space velocity (GHSV) of $45,515h^{-1}$. According to TPR patterns of $Pt-Na/Ce_{(1-x)}Zr_{(x)}O_2$ catalysts, the reducibility increases with decreasing the $ZrO_2$ content. As a result, Cubic structure $Pt-Na/Ce_{(1-x)}Zr_{(x)}O_2$ catalysts exhibited higher CO conversion than tetragonal structure $Pt-Na/Ce_{(1-x)}Zr_{(x)}O_2$ catalysts. Expecially, Pt-Na/$CeO_2$ exhibited the highest CO conversion as well as 100% selectivity to $CO_2$. Moreover, Pt-Na/$CeO_2$ catalyst showed relatively stable activity with time on stream. The high activity of cubic structure Pt-Na/$CeO_2$ catalyst was correlated to its higher oxygen storage capacity (OSC) of $CeO_2$ and easier reducibility of Pt/$CeO_2$.

Solid $CO_2$ sorbents and WGS catalyst for pre-combustion $CO_2$ capture (연소전 $CO_2$ 회수를 위한 고체 흡수제 및 WGS 촉매 특성 평가)

  • Eom, Tae Hyoung;Lee, Joong Beom;Park, Keun Woo;Choi, Dong Hyuk;Baek, Jeom-In;Ryu, Chong Kul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.111.1-111.1
    • /
    • 2010
  • 석탄가스화복합발전(IGCC: Integrated Gasification Combined Cycle)의 고온 고압 합성가스로부터 $CO_2$를 저비용으로 포집하기 위한 연소전 포집 기술 중 유동층 촉진수성가스전환(SEWGS) 공정이 제안되어 연구개발 중에 있다. 연소전 $CO_2$ 포집을 위한 SEWGS 공정은 동일한 2탑 순환 유동층 반응기에서 고온 고압의 합성가스($H_2$, CO)를 유동층 WGS 촉매를 사용하여 CO를 $CO_2$로 전환하는 동시에 전환반응으로 생성된 $CO_2$를 흡수제를 이용하여 포집하는 기술이다. 본 연구는 $CO_2$ 회수와 WGS 반응이 동시에 이루어지는 공정에 적용 가능한 건식 재생 흡수제 및 유동층 WGS 촉매 개발을 목표로 $CO_2$ 흡수제(P Series) 및 WGS 촉매(PC Series) 조성을 제안하고 분무건조기를 이용하여 6~8kg/batch로 성형 제조하였다. 제조된 $CO_2$ 흡수제 및 촉매의 특성 평가 결과 내마모도(Attrition resistance)를 포함한 물리적 특성이 유동층 공정의 요구조건을 만족하는 결과를 얻을 수 있었다. 또한, 모사 석탄 합성가스를 이용하여 20bar, $200^{\circ}C$ 흡수/$400^{\circ}C$ 재생 조건에서 열중량 분석기(TGA) 및 가압 유동층(Fluidized-bed) 반응기를 통한 흡수제의 $CO_2$ 흡수능 평가를 수행하였다. 그 결과 내마모도(AI) 3% 이하로 기계적 강도가 우수하며, $CO_2$ 흡수능 17.6 wt%(TGA) 및 11wt%(가압 유동층)를 나타냈다. 유동층 WGS 특성 평가 결과 내마모도가 7~35%로 우수하였고, CO 전환율은 $200^{\circ}C$에서 80% 이상으로, 유동층 SEWGS 공정에 적용 가능한 특성을 확인하였다.

  • PDF

An important factor for the water gas shift reaction activity of Cu-loaded cubic Ce0.8Zr0.2O2 catalysts

  • Jang, Won-Jun;Roh, Hyun-Seog;Jeong, Dae-Woon
    • Environmental Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.339-344
    • /
    • 2018
  • The Cu loading of a cubic $Ce_{0.8}Zr_{0.2}O_2$-supported Cu catalyst was optimized for a single-stage water gas shift (WGS) reaction. The catalyst was prepared by a co-precipitation method, and the WGS reaction was performed at a gas hourly space velocity of $150,494h^{-1}$. The results revealed that an 80 wt% $Cu-Ce_{0.8}Zr_{0.2}O_2$ catalyst exhibits excellent catalytic performance and 100% $CO_2$ selectivity ($X_{CO}=27%$ at $240^{\circ}C$ for 100 h). The high activity of 80 wt% $Cu-Ce_{0.8}Zr_{0.2}O_2$ catalyst is attributed to the presence of abundant surface Cu atoms and the low activation energy of the resultant process.

Noble metal catalysts for water gas shift reaction and their effectiveness factor (귀금속 계열 촉매의 수성가스전환반응특성과 유효인자)

  • Lim, Sung-Kwang;Bae, Joong-Myeon;Kim, Ki-Hyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.514-517
    • /
    • 2008
  • Water gas shift(WGS) is an important step in fuel process for fuel cells, and improperness of commercial WGS catalysts for use in fuel cell systems has prompted numerous researches on noble metal catalysts. A selected noble metal catalyst for water gas shift reaction(WGS) was prepared with various metal loadings. The prepared catalysts were tested under two feeding conditions. At moderate residence time, carbon monoxide conversion was much higher on the noble metal catalysts as compared to commercial high-temperature shift catalyst. Effects of metal loading were examined by activity tests at short residence time. Higher metal loading effected higher reaction rate. The kinetic data was fitted to simple reaction equations and effectiveness factor was estimated. The results suggest the necessity of a structural design for the highly active noble metal catalysts.

  • PDF

An Optimization of Aging Time for Low-Temperature Water-Gas Shift Over Cu-Zn-Al Catalyst (저온 수성가스 전이 반응용 Cu-Zn-Al 촉매의 숙성시간 최적화)

  • SHIM, JAE-OH;NA, HYUN-SUK;AHN, SEON-YONG;JANG, WON-JUN;ROH, HYUN-SEOG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.2
    • /
    • pp.103-110
    • /
    • 2019
  • Cu-Zn-Al catalysts were prepared via co-precipitation method for low-temperature water-gas shift (LT-WGS) reaction under practical reaction condition. Aging time was systematically changed to find optimum point for LT-WGS under practical condition. The Cu-Zn-Al catalyst aged for 72 hours showed the highest CO conversion within low-temperature range as well as very stable catalytic activity for 200 hours despite the practical reaction condition.

Development of High Performance WGS Catalyst for Fuel Processor Applications (연료 개질기용 고성능 수성가스 전환반응 촉매 개발)

  • Lee, Yoon-Ju;Ryu, Jong-Woo;Kim, Dae-Hyun;Choi, Eun-Hyung;Noh, Won-Suck;Lee, Sang-Deuk;Moon, Dong-Ju
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.451-454
    • /
    • 2006
  • WGS reaction over Mo2C and ceria based catalysts was investigated to develop an alternative commercial Cu-Zn/Al2O3 catalyst for fuel processor and hydrogen station. The Mo2C catalysts were prepared by a temperature programmed method and the various metal supported cerium oxide catalysts were prepared by an Impregnation method. The catalysts were characterized by the N2 physisorption, Co chemisorption, XRD, TEM and TPR. It was found that Mo2C and 0.2wt% Pt-40wt%, Ni/CeO2 catalysts had higher activity and stability than the Cu-Zn/Al203 above $260^{\circ}C$. Moreover, CO conversion of more than 85% was observed at $280{\sim}300^{\circ}C$. But all catalysts were deactivated during the thermal cycling runs. The results suggest that these catalysts are an attractive candidate for the alternative Cu-Zn/Al2O3 catalyst for fuel processor and hydrogen station applications.

  • PDF

A Study on Cu Based Catalysts for Water Gas Shift Reaction to Produce Hydrogen from Waste-Derived Synthesis Gas (폐기물 가스화 합성가스로부터 수소 생산을 위한 수성가스전이 반응용 Cu 기반 촉매 연구)

  • Na, Hyun-Suk;Jeong, Dae-Woon;Jang, Won-Jun;Lee, Yeol-Lim;Roh, Hyun-Seog
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.3
    • /
    • pp.227-233
    • /
    • 2014
  • Simulated waste-derived synthesis gas has been tested for hydrogen production through water-gas shift (WGS) reaction over supported Cu catalysts prepared by co-precipitation method. $CeO_2$, $ZrO_2$, MgO, and $Al_2O_3$ were employed as supports for WGS reaction in this study. $Cu-CeO_2$ catalyst exhibited excellent catalytic activity as well as 100% $CO_2$ selectivity for WGS in severe conditions ($GHSV=40,206h^{-1}$ and CO concentration = 38.0%). In addition, $Cu-CeO_2$ catalyst showed stable CO conversion for 20h without detectable catalyst deactivation. The high activity and stability of $Cu-CeO_2$ catalyst are correlated to its easier reducibility, high oxygen mobility/storage capacity of $CeO_2$.