• 제목/요약/키워드: WETLAND EFFECT

검색결과 130건 처리시간 0.025초

연못을 이용한 동절기 인공습지 오수처리수의 추가 처리 (Pond System for Further Polishing of Constructed Wetland Effluent during Winter Season)

  • 윤춘경;전지홍;김민희;함종화
    • 한국농공학회지
    • /
    • 제44권4호
    • /
    • pp.139-148
    • /
    • 2002
  • Pilot study was performed to examine the feasibility of the pond system for further polishing of treatment wetland effluent from December 2000 to June 2001. The wetland system used for the experiment was highly effective to treat the sewage during the growing season, but it was less effective and its effluent was still high to discharge to the receiving water body. Therefore, the wetland effluent may need further treatment to prevent water quality degradation. Pond system could be used to hold and further polish the wetland effluent during the winter season and ots feasibility was evaluated in this study. Additional water quality improvement was apparent in the pond system during winter season, and the pond effluent could be good enough to meet the effluent water quality standards if it is properly managed. Timing of the pond effluent discharge appears to be critical for pond system management because it is a closed system and whole water quality constituents are affected by physical, chemical, and biological pond environments. Once algae started to grow in mid-April, constituents in the pond water column interact each other actively and its control becomes more complicated. Therefore, upper layer of the pond water column which is clearer than the lower layer my need be discharged in March right after ice cover melted. In the experiment, water quality of the upper water column was markedly clear in March than ant other times probably because of freezing-thawing effect. The remaining lower water column could be further treated by natural purification as temperature goes up or diluted with better quality of wetland effluent for appropriate water uses. This study demonstrated the feasibility of pond system for subsequent management of wetland effluent during the winter season, however, more study is needed for field application.

인공습지를 이용한 하구담수호 유입하천수의 4년간 실험결과 분석 (Analysis of 4-year experimental data from water quality improvement of inflow stream in estuary using wetland)

  • 김형철;윤춘경;한정윤;이새봄;신현범
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2005년도 학술발표논문집
    • /
    • pp.557-562
    • /
    • 2005
  • The field scale experiment was performed to examine the effect of plant coverage on the constructed wetland performance and recommend the optimum development and management of macrophyte communities. Four sets(each set of 0.88ha) of wetland (0.8ha) and pond(0.08ha) systems were used. Water flowing into the Seokmoon estuarine reservoir from the Dangjin stream was pumped into wetland system. Water depth was maintained at $0.3{\sim}0.5m$ and hydraulic retention time was managed to about $2{\sim}5$ days; emergent plants were allowed to grow in the wetlands. After three growing seasons of the construction of wetlands, plant coverage was about 95%, even with no plantation, from bare soil surfaces at the initial stage. Dead vegetation affected nitrogen removal during winter because it is a source of organic carbon which is an essential parameter in denitrification. Biomass harvesting is not a realistic management option for most constructed wetland systems because it could only slightly increase the removal rate and provide a minor nitrogen removal pathway due to lack of organic carbon.

  • PDF

Microbial population dynamics in constructed wetlands: Review of recent advancements for wastewater treatment

  • Rajan, Rajitha J.;Sudarsan, J.S.;Nithiyanantham, S.
    • Environmental Engineering Research
    • /
    • 제24권2호
    • /
    • pp.181-190
    • /
    • 2019
  • Constructed wetlands are improvised man-made systems, designed for adopting the principle of natural wetlands for purifying wastewater - the elixir of life. They are used widely as a cost-effective and energy-efficient solution for treating greywater generated from different tertiary treatment sources. It provides an elaborate platform for research activities in an attempt to recycle earth's natural resources. Among the several organic impurities removal mechanisms existing in constructed wetland systems, the earth's active microbial population plays a vital role. This review deals with the recent advancements in constructed wetland systems from a microbiological perspective to (effect/ devise/ formulate) chemical and physical treatment for water impurities. It focuses on microbial diversity studies in constructed wetlands, influence of wetland media on microbial diversity and wetland performance, role of specific microbes in water reuse, removal of trace elements, some heavy metals and antibiotics in constructed wetlands. The impurities removal processes in constructed wetlands is achieved by combined interactive systems such as selected plant species, nature of substrate used for microbial diversity and several biogeochemical effected reaction cycles in wetland systems. Therefore, the correlation studies that have been conducted by earlier researchers in microbial diversity in wetlands are addressed herewith.

Sewage Treatment Using Natural Systems and Effluent Reuse for Crop Irrigation in Small Communities

  • Ham, Jong-Hwa;Yoon, Chun-G.;Jeon, Ji-Hong;Hwang, Ha-Sun
    • 한국농공학회지
    • /
    • 제45권7호
    • /
    • pp.70-82
    • /
    • 2003
  • A pilot study was performed from July 1998 to December 2002, including winter performance, to examine seasonal performance of a constructed wetland and subsequent pond system for treatment of sewage in small communities of Korea. Pond was operated as a intermittent-discharge pond during winter period, and continuous flow system during growing season; its effects was evaluated from December 2001 to April 2003. The subsurface flow (SSF) wetland was satisfactory for treating sewage with good removal efficiency even during the winter period. The wetland effluent concentrations of $BOD_5$ and TSS were often higher in winter than in the growing season, but this was explained by the higher loading rates, rather than lower removal efficiency. The relatively poor-quality wetland effluent was further polished during winter in the pond. The upper layer of the pond water column became remarkably clear immediately after ice melt. In the growing season, ponds could be operated as a continuous flow system to remove nutrients and pathogens, and the effluent of pond could be reused as a supplemental irrigation water without risk of infection by sewage-borne pathogens as well as causing adverse effect on growth and yield. Overall, the wetland system was found to be adequate for treating sewage with stable removal efficiency, and the intermittent-discharge pond was found to be effective for further polishing if necessary. Therefore, the combination of a wetland and subsequent pond system and reuse of effluent as crop irrigation water is recommended as a practical alternative to treat sewage in Korean small communities, and partial discharge of pond water in March is suggested.

NPS-WET 습지 모델링을 이용한 습지 증설에 따른 수질개선 효과 분석 (Analysis of Water Quality Improvement Effects on Wetland Expansion using NPS-WET Model)

  • 박종석;이경훈;한창화
    • 한국습지학회지
    • /
    • 제19권4호
    • /
    • pp.393-402
    • /
    • 2017
  • 본 연구는 바이오파크 유역 내 인공습지에 대하여 습지규모와 수질개선효과의 관련성을 분석하여, 최적의 습지규모 설계를 위한 기초 자료를 제공하기 위하여 수행되었다. 본 연구를 통해 인공습지에 대한 합리적인 규모 설계 및 운영에 기여할 것으로 판단되며, 연구결과를 통해 다음과 같은 결론을 얻었다. 인공습지의 0-100 % 증설범위의 설계별 시나리오 분석결과, '기존규모 대비 75 % 증설'의 경우, '기존규모의 현 상태 운영' 설계 기준과 비교하여 수질이 BOD5는 66.7 %, TSS는 69.9 %, T-N은 64.7 %, T-P는 85.5 %, Chl-a는 51.8 % 만큼 개선되어 가장 양호한 효과를 보여주었으며, 특히 4계절 중 여름철에 Chl-a를 제외한 수질항목에서 효과가 크게 나타나는 경향이었다. 그리고 설계규모와 수질개선 효과간 정비례관계가 성립되지 않은 것으로 나타났다.

인공습지 내 개방수역 조성에 따른 처리효율분석 (Analysis of Treatment Efficiency according to Open-water in Constructed Wetland)

  • 김형철;윤춘경;엄한용;김형중;함종화
    • 한국물환경학회지
    • /
    • 제24권6호
    • /
    • pp.709-717
    • /
    • 2008
  • The field scale experiment which is constructed with four sets (0.88 ha for each set) of wetland (0.8 ha) and pond (0.08 ha) systems was performed to examine the effect of plant coverage on the constructed wetland performance and to recommend the optimum development and management of macrophyte communities. After six growing seasons of wetlands, plant coverage was about 100%. And the concentration of DO showed low value (1.0~5.4 mg/L). This is caused by a blighted plant consumed dissolved oxygen with decay in water column. As the result, water column went to be anaerobic conditions and T-N removal rate are 58~67%. Dead vegetation increased nitrogen removal during winter because it is a source of organic carbon which is an essential parameter in denitrification. However, wetland released phosphorus caused by a blighted plant and accumulation, the removal rate of phosphorus might be decreased. To rise of DO concentration, the three open-waters were constructed in cell 3 and 4. Cell 3 has two open-waters (width 10 m, depth 1.8 m) and cell 4 has one open-water (width 20 m, depth 1.8 m). As the result, DO concentration and treatment efficiency of nutrient and BOD were improved. In case that constructed wetland is operated for a long time, physical circulation structure such as open water help continuous circulation of aerobic and anaerobic conditions. Through the constructed open-water, treatment efficiency of phosphorus and nitrogen in wetland could be improved effectively.

식생피도가 인공습지의 질소 및 인 처리효율에 미치는 영향과 습지식물의 조성 및 관리 (The Effect of Plant Coverage on the Constructed Wetlands Performance and Development and Management of Macrophyte Communities)

  • 함종화;김형철;구원석;신현범;윤춘경
    • 생태와환경
    • /
    • 제38권3호통권113호
    • /
    • pp.393-402
    • /
    • 2005
  • 본 연구에서는 비점오염원 제어를 목적으로 조성한 인공습지의 현장실험 결과를 바탕으로 인공습지의 식생피도가 습지의 처리효율에 미치는 영향과 습지식물의 조성 및 관리방안에 대해 고찰하였다. 인공습지에 수생식물을 인공식재하지 않고 자연적인 활착을 유도한 결과 3번의 생장기를 거치면서 평균 약 90% 이상의 높은 식생피도를 얻을 수 있었으며, 원활한 식생활착을 위해서는 물 관리가 매우 중요한 것으로 나타났다. T-N, T-P의 제거율은 연 평균 약 45 ${\sim}$ 55% 정도로 높게 나타났으며, T-P는 생장기와 동절기 모두 비슷한 제거율을 나타낸 반면에, T-N의 제거율은 수온의 영향으로 동절기 동안 생장기보다 낮은 약 33%를 나타내었다. 약 15%의 범위 내에서 식생피도의 차이는 T-P의 처리효율에 영향을 미치지 않는 반면에, 동절기 T-N의 처리효율에 영향을 미쳐 식생피도가 낮은 습지가 처리효율 또한 낮게 나타났다. 이는 질산성질소의 탈질화에 필수적인 유기탄소가 식생피도가 낮은 습지에서 적게 공급되었기 때문이라 생각된다. 영양물질 제거를 위한 인공습지를 조성할 경우 습지 전체를 모두 식생으로 피복되도록 하는 것 보다는 약 10 ${\sim}$ 15% 범위 내에서 일부 구역을 개방수역 (open water)으로 처리하여 어류 및 물새들을 위한 서식공간을 제공하여도 영양물질 제거효율에는 큰 차이가 발생하지 않을 것으로 생각된다. 대규모로 인공습지를 조성할 경우에는 영양물질 제거량을 증대시키기 위해 식물체를 제거하는 관리방안은 수행하지 않는 것이 경제적으로나 습지의 관리적인 측면에서 좋을 것으로 생각된다.

Assessing Biodiversity of Benthic Macroinvertebrates and Influences of Several Environmental Factors on the Community Structure in Upo Wetland by Long-term Ecological Monitoring

  • Kim, Hyoung-Gon;Lee, Dong-Jun;Yoon, Chun-Sik;Cheong, Seon-Woo
    • 한국환경과학회지
    • /
    • 제25권4호
    • /
    • pp.459-472
    • /
    • 2016
  • We assessed the distribution of benthic macroinvertebrate at four surveying sites in Upo Wetland, a Ramsar site and the largest wetland in Korea, from February 2006 to November 2013. A long-term ecological monitoring was done monthly by using quantitative sampling method with dip net for analyzing the community change and correlation between the biodiversity and the environmental factors because environmental factors have a decisive effect on the community structure of the benthic macroinvertebrates. Total samples from the Upo Wetland area were classified into 3 phyla, 6 classes, 17 orders, 68 families, 176 species, and 25,720 individuals. Among the 176 species, 62 of the species had not been previously reported in this area. Asellus sp., Diplonychus esakii, and Gyraulus chinensis were the most common species in Upo Wetland. The change patterns of annual species diversity and species richness were calculated by using the average number of monthly occurring species and individuals. Diversity index increased from March to May and decreased after that showing lower diversity indices in July and August. It increased again in September and in October. Richness index showed similar tendency and fell around February and July, followed by a rising tendency around May and October. Correlation and regression analyses were performed with the change of biodiversity and each environmental factor. We found that water temperature have very significant positive correlation with species diversity in spring, and have significant indices in autumn and winter. On the other hand, precipitation showed a significantly negative correlation value in summer and autumn suggesting it has an effect on the community structure of benthic macroinvertebrates.

습지생태공원의 갈대확장 조절 기술 개발 (Development of Phragmites communis Expansion Control Methods at the Wetland Ecological Park)

  • 성기준;이용민;정용현;박소영
    • 한국환경복원기술학회지
    • /
    • 제13권5호
    • /
    • pp.1-11
    • /
    • 2010
  • It is very difficult to control the expansion of reed at a wetland ecological park due to their aggressive reproduction capability. Therefore, proper topography and wetland hydrology should be provided before the construction of a wetland ecological park. Appropriate measures should be taken at the initial stages to prevent reed expansion. Field experiments were conducted at the newly constructed wetland ecological park for 15 months to develop methods to control the reproduction and expansion of Phragmites communis. A complete shading method had the best effect on the prevention of reed reoccurrence among other methods. Complete removal of the rhizomes controlled the reed growth to a greater extent than cutting the aboveground shoots. Water-level manipulation was also better than a half-shading method for the prevention of reed reproduction. These results indicated that soil properties and edge effects can influence the reed growth. Cutting only the aboveground shoots facilitates the growth of reed. These results suggest that reed control should be implemented repeatedly and an alteration in the wetland topography and hydrology may be more effective in the long term. Combination of treatments such as water-level management with shading should be considered to control the growth of reed. Adoptive management for created or restored ecosystem might be considered for accomplishment of its original purpose.

부유식물과 침수식물이 습지의 주요 수 환경에 미치는 영향 (Effects of Floating and Submerged Plants on Important Water Environments of Wetland)

  • 이근주;성기준
    • 한국습지학회지
    • /
    • 제15권3호
    • /
    • pp.289-300
    • /
    • 2013
  • 본 연구에서는 습지식물의 유형에 따라 습지의 주요 수 환경에 미치는 영향을 파악하고자 부유식물로는 부레옥잠(Eichhornia crassipes)을 침수식물로는 붕어마름(Ceratophyllum demersum)을 인공습지 실험구에 도입한 후 pH, 용존산소, 수온, 산환환원전위, 영양물질 농도 등 주요 수 환경의 변화를 조사하였다. 수 표면에 주로 존재하는 부유식물은 빛이 수체내로 투과하는 것을 막아, 다른 처리구에 비해 수온이 낮게 나타났으며 주 야 모두 상 하층 수온의 차이도 관찰되었다. 오염물 유입 후 모든 실험구에서 용존 산소가 일시적으로 감소하였다가 다시 회복되었는데 특히 수중에서 광합성을 하는 침수식물 처리구에서 주기성을 가지면서 증가하였고 상승폭 또한 가장 큰 것으로 나타났다. pH 또한 침수식물 처리구에서 주기성을 가지면서 변동하는 것으로 나타나 용존산소의 경우와 같이 광합성의 영향임을 보여주었다. 본 연구에서 습지토양의 산환환원전위가 수생식물의 유무나 유형에 따라 영향을 받을 수 있음이 관찰되었으며 이와 관련된 생지화학적 기작에도 영향을 줄 수 있는 것으로 판단되었다. 수체 내 총질소와 총인의 농도는 물만 있는 대조구 <물과 토양이 있는 대조구 < 부유식물 처리구 < 침수식물 처리구의 순으로 감소한 것으로 나타나 식물이 영양물질 제거에도 효과적임을 보여주었다. 부유식물과 침수식물 모두 조류발생을 억제하는 것으로 나타났는데 특히 부유식물의 경우 더 효과적인 것으로 나타났다.