• Title/Summary/Keyword: WET DEPOSITION

Search Result 267, Processing Time 0.028 seconds

Numerical simulation of wet deposition flux by the deposition model (침적 모형에 의한 습성침적 플럭스 수치모의)

  • 이화운;문난경;임주연
    • Journal of Environmental Science International
    • /
    • v.11 no.12
    • /
    • pp.1235-1242
    • /
    • 2002
  • The purpose of this study is to estimate wet deposition flux and to investigate wet deposition characteristics by using the ADOM model. Wet deposition flux of highly reactive $SO_2$ is estimated by applying observed meteorological parameters and concentrations of chemical species to the ADOM model. Wet deposition is largely dependent on large scale precipitation and cloud thickness. Wet deposition flux of sulfate depends on $SO_2$ oxidation in clouds. When large amount of $SO_2$ is converted to sulfate, deposition flux of sulfate increases, but wet deposition flux of $SO_2$ is small. On the whole, the pattern of sulfate wet deposition flux agrees with the typical pattern of sulfate wet deposition that is high in the summer(July) and low in the winter(January).

Deposition Characteristics of Water-soluble Inorganic Ions in the Iksan Ambient Air during Fall, 2004 (가을철 대기환경 중 수용성 이온성분의 침적특성)

  • Kang, Gong-Unn;Kim, Nam-Song;Jeon, Seon-Bok
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.4 s.91
    • /
    • pp.359-372
    • /
    • 2006
  • In order to investigate the daily deposition characteristics of water-soluble inorganic components in airborne deposit on the Iksan, deposition samples were collected using a deposition gauge from October 16 to November 1, 2004. Deposition samples were collected using two different sampling gauges, a dry gauge and a wet gauge, respectively. To get wet the bottom of wet gauge during the sampling period, the volume of $30{\sim}50ml$ distilled ionized water was added in a wet gauge before the beginning of each deposition sampling. Deposition samples were collected twice a day and analyzed for inorganic water-soluble anions ($Cl^-,\;{NO_3}^-,\;{SO_4}^{2-}$) and cations (${NH_4}^+,\;Na^+,\;K^+,\;Mg^{2+},\;Ca^{2+}$) using ion chromatography. Qualify control and quality assurance of analytical data were checked by the data obtained from reinjection of standard solution, Dionex cross check standard solutions, and random several deposition samples, and measured data was estimated to be reliable. Considering the deposition sample volume, the sampling time, the surface area of sampling container, and the ion concentration measured, the daily deposition amounts for measured ions were calculated in $mg/m^2$. The total daily deposition amounts of all measured ions for dry and wet gauge were $7.5{\pm}2.8$ and $17.7{\pm}4.2mg/m^2$, respectively. A significant increase in deposition amount during rainfall days was observed for both wet gauge and dry gauge, having no difference of deposition amount between in wet gauge and in dry gauge. The mean deposition of all ions measured in this study were higher in wet gauge than in dry gauge because of the surface difference of the sampling container, especially for ${NH_4}^+\;and\;{SO_4}^{2-}$. The mean deposition amounts of ${NH_4}^+\;and\;{SO_4}^{2-}$ in wet gauge were found to be about 10 times and 3 times higher than those in dry gauge, while the rest of the chemical species were equal or a little higher in wet gauge than in dry gauge. Dominant species in dry gauge were ${NO_3}^-\;and\;Ca^{2+}$, accounting for 21% and 28% of the total ion deposition, whereas those in wet gauge were ${SO_4}^{2-}\;and\;{NH_4}^+$, accounting for 19% and 41% of the total ion deposition, respectively.

Numerical Simulations of Dry and Wet Deposition over Simplified Terrains

  • Michioka, T.;Takimoto, H.;Ono, H.;Sato, A.
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.4
    • /
    • pp.270-282
    • /
    • 2017
  • To evaluate the deposition amount on a ground surface, mesoscale numerical models coupled with atmospheric chemistry are widely used for larger horizontal domains ranging from a few to several hundreds of kilometers; however, these models are rarely applied to high-resolution simulations. In this study, the performance of a dry and wet deposition model is investigated to estimate the amount of deposition via computational fluid dynamics (CFD) models with high grid resolution. Reynolds-averaged Navier-Stokes (RANS) simulations are implemented for a cone and a two-dimensional ridge to estimate the dry deposition rate, and a constant deposition velocity is used to obtain the dry deposition flux. The results show that the dry deposition rate of RANS generally corresponds to that observed in wind-tunnel experiments. For the wet deposition model, the transport equation of a new scalar concentration scavenged by rain droplets is developed and used instead of the scalar concentration scavenged by raindrops falling to the ground surface just below the scavenging point, which is normally used in mesoscale numerical models. A sensitivity analysis of the proposed wet deposition procedure is implemented. The result indicates the applicability of RANS for high-resolution grids considering the effect of terrains on the wet deposition.

Seasonal Deposition Characteristics of Water-soluble Ion Species in Ambient Aerosol in Iksan City (익산지역 대기에어로졸 중 수용성 이온성분의 계절별 침적 특성)

  • Kang, Gong-Unn
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.1
    • /
    • pp.56-70
    • /
    • 2013
  • Objectives: This paper aims to investigate the seasonal deposition characteristics of water-soluble ion species by comparing the deposition amount of two samples taken according to different sampling methods of deposition for ambient aerosol such as gases and particulate matters. Methods: Deposition samples were collected using two deposition gauges in the downtown area of Iksan City over approximately two weeks of each season in 2004. The type of deposition gauges consisted of two different sampling methods known as dry gauge and a wet gauge. The dry gauge was empty and used a dry PE bottle with an inlet diameter of 9.6 cm. Before the beginning of each deposition sampling, a volume of 30-50 ml distilled ionized water was added to the wet gauge to wet the bottom during the sampling period. Deposition samples were measured twice per day and analyzed for inorganic water-soluble ion species using ion chromatography. Results: The daily deposition amounts of all measured ions in the dry gauge and the wet gauge showed a significant increase when precipitation occurred, having no difference of deposition amount between in the wet gauge and in the dry gauge. By excluding two samples from rainy days during the sampling period, the mean daily deposition of all ions in dry gauge and wet gauge were $6.58mg/m^2/day$ and $18.16mg/m^2/day$, respectively. The mean deposition amounts of each ion species were higher in the wet gauge than in the dry gauge because of the surface difference of the sampling gauge, especially for $NH_4{^+}$ and ${SO_4}^{2-}$. The mean deposition amounts of $NH_4{^+}$ and ${SO_4}^{2-}$ in the wet gauge were found to be about 15.4 times and 5.2 times higher than that in dry gauge, with a pronounced difference between spring and summer, while the remaining ion species were 1.1-2.0 times higher in the wet gauge than in the dry gauge. Dominant species in the dry gauge were $Ca^{2+}$ and $NO_3{^-}$, accounting for 36.4% and 18.1% of the total ion deposition, whereas those in the wet gauge were $NH_4{^+}$ and ${SO_4}^{2-}$, accounting for 32.5% and 25.0% of the total ion deposition, respectively. Conclusion: The seasonal differences in deposition amounts of water-soluble ion species in ambient aerosol depending on the two types of different sampling methods were identified. This suggests that the removal of ambient aerosol is strongly influenced by the weather conditions of each season as well as the condition of earth's surface, such as dry ground and water.

IDENTIFICATION OF POSSIBLE MERCURY SOURCES AND ESTIMATION OF MERCURY WET DEPOSITION FLUX IN LAKE ONTARIO FROM LAKE ONTARIO ATMOSPHERIC DEPOSITION STUDY (LOADS)

  • Han, Young-Ji
    • Environmental Engineering Research
    • /
    • v.10 no.6
    • /
    • pp.306-315
    • /
    • 2005
  • Total gas phase mercury (TGM) concentrations and event wet-only precipitation for Hg were collected for nine months (from April, 2002 to Dec., 2002) at Sterling, NY on the shoreline of Lake Ontario. TGM concentrations measured in this study ($3.02{\pm}2.14\;ng/m^3$) were in somewhat high range compared to other background sites. Using simplified quantitative transport bias analysis (SQTBA) possible sources affecting high Hg concentration in Sterling was identified, and they are coal-fired power plants located in southern NY and Pennsylvania. Wet deposition measured at Mercury Deposition Network (MDN) sites including Pt. Petre and Egbert, ON were compared with data obtained at the Sterling to estimate the total mercury wet deposition flux to Lake Ontario. The wet deposition flux was calculated to be the highest at the Sterling site ($7.94\;{\mu}g/m^2$ from April, 2002 to Dec. 2002) and the lowest at the Egbert ($3.92\;{\mu}g/m^2$), due to the both the difference in precipitation depth and Hg concentration in the precipitation. The deposition measured at the Sterling site is similar to Lake Michigan deposition of $6-14\;{\mu}g/m^2$ (converted for ninth months) measured for Lake Michigan Mass Balance Study (LMMBS).

Estimation of Nitrogen and Sulfur Deposition over the Yellow Sea Region (황해 지역의 질소와 황 침적 추정)

  • 김진영;김영성;이승복;문길주
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.2
    • /
    • pp.217-229
    • /
    • 2003
  • The amounts of nitrogen and sulfur deposited in the region of the Yellow Sea in both dry and wet forms were estimated by using the measurement data published in tile literature during tile past 10 years. In the estimation of dry deposition, concentrations at ground stations including those at a station on the Chinese side and concentrations from shipboard and aircraft measurements were used as well as deposition velocities. Wet deposition flux was determined at ground stations on the Korean side either by taking the flux data themselves or by calculating them from precipitation data in the literature. The dry deposition flux over the Yellow Sea was much greater than those China was confirmed from the fact that the total amount summing wet and dry depositions exceeded the emission amount from Korea. Dry deposition was principally made in the gaseous form due to a larger deposition velocity. Nevertheless, since the deposition velocity over water was smaller than that over the ground, dry deposition of oxidized nitrogen was smaller than wet deposition. As a whole, wet depositions of nitrogen and sulfur were 2.3 and 1.9 times 1arger than corresponding dry depositions, respectively.

Development of the Novel Dry and Wet Deposition Collector (새로운 건성 및 습성 침착 채취기의 개발)

  • 이병규;이채복
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.6
    • /
    • pp.675-684
    • /
    • 2000
  • A novel dry and wet deposition collector, which can overcome the several problems such as water evaporation cartridge cracks and high costs founded in the previous collector systems, has been constructed. ENVI-18 SPE adsorption cartridge has been used to measure atmospheric deposition of polycylic aromatic hydrocarbons (PAHs). A surrogate surface, consisted of water and methanol, was filled in the dry deposition funnel to simulate dry deposition onto water surface. A water supply system in order to compensat evaporation of the surrogate surface was used and it was consisted of a piston pump, a tubing pump, a overflow tube and a chamber system. A novel water vaporizing system to supply water onto the wet SPE cartridge system with a constant flow rate was developed. The novel water vaporizing system, consisted of a vacuum pump, a water supply reserviour and tube and a mini space heater, could prevent the PAHs adsorption cartridge cracks occurred in the previous collector and effectively adsorb PAHs. The novel dry and wet deposition collector showed a good adsorption, desorption, and recovery rates of PAHs. By reducing the number of pumps used and employing polypyopylene (PP) instead of teflon as a material of collection funnel, the total construction costs were much reduced as compared with the previous dry and wet deposition collectors.

  • PDF

Seasonal Variations in Mercury Deposition over the Yellow Sea, July 2007 through April 2008

  • Ghim, Young Sung;Oh, Hyun Sun;Kim, Jin Young;Woo, Jung-Hun;Chang, Young-Soo
    • Asian Journal of Atmospheric Environment
    • /
    • v.10 no.3
    • /
    • pp.146-155
    • /
    • 2016
  • Spatial and temporal variations of mercury, including dry and wet deposition fluxes, were assessed over Northeast Asia, targeting the Yellow Sea, using meteorology and chemistry models. Four modeling periods, each representative of one of the four seasons, were selected. Modeling results captured general patterns and behaviors, and fell within similar ranges with respect to observations. However, temporal variations of mercury were not closely matched, possibly owing to the effects of localized emissions. Modeling results indicated that dry deposition is correlated with wind speed, while wet deposition is correlated with precipitation amount. Overall, the wet deposition flux of $66ng/m^2-day$ was about twice as large as the dry deposition flux of $32ng/m^2-day$, when averaged over the four modeling periods. Dry deposition occurred predominantly in the form of reactive gaseous mercury (RGM). In contrast, RGM accounted for only about two-thirds of wet deposition, while particulate mercury accounted for the remainder.

Estimation of Atmospheric Mercury Wet-deposition to Lake So-yang (대기 중 수은의 습식 침적 평가: 소양호를 중심으로)

  • Ahn, Myung-Chan;Han, Young-Ji
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.6
    • /
    • pp.693-703
    • /
    • 2008
  • The important source of the mercury in water-column is the influx of atmosphere mercury, via dry and wet deposition. In this study, wet deposition of mercury was estimated to be $14.56{\mu}g/m^2$ during 15 months at the Lake Soyang, which is a little higher than those observed in the several rural US Mercury Deposition Network (MDN) sites with similar precipitation depth. The mercury concentration in precipitation did not show a positive correlation with atmospheric RGM (reactive gaseous mercury) concentration, while maintaining good correlation with atmospheric $PM_{2.5}$ at Soyang Dam. This result suggests that the contribution of particulate Hg to the total Hg wet deposition should be more significant than that of RGM. In this study, both precipitation depth and precipitation type affected the amount of wet deposition and the concurrent mercury levels in precipitation. There was generally an inverse relationship between precipitation depth and Hg concentration in precipitation. Precipitation type was another factor that exerted controls on the Hg concentration in precipitation. As a result, the highest concentration of Hg was observed in snow, followed by in mixture (snow+rain) and in rain.

A Numerical Study on the Size and Depositions of Yellow Sand Events (황사의 크기 및 침착량에 대한 수치 모의)

  • 정관영;박순웅
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.3
    • /
    • pp.191-208
    • /
    • 1998
  • Estimations of dry and wet depositions in Korea and the size distributions of yellow sand above Korea have been carried out using the Eulerian aerosol model with the simulated meteorological data from the SNU mesoscale meteorological model. The estimated particle size distribution in Korea shows a bimodal distribution with peak values at 0.6 pm and 7 pm and a minimum at 2 pm in the lower layer However, as higher up, the bimodal distribution becomes an unimodal distribution with a peak value at 4∼5mm. Among the total amount of yellow sand deflated in the source regions , the dry and wet deposition fluxes were about 92%, and about 1.3∼0.5%, repectively, and the rest(5∼6%) is suspended in the air, Most of dust lifted in the air during the clear weather is deposited in the vicinity of the source regions by dry deposition and the rest undergoes the long -range transport with a gradual removal by the wet deposition processes. Over Korean peninsula, the total amount of yellow sand suspended in the air was about 6∼8% of the emissions in the source region and the dry and wet deposition fluxes were about 0.005∼0.7% and 0.003∼0.051% of the total emitted amount, repectively. It is estimated that 2.7∼8.9 mesa-tons of yellow sand is transported annually over the Korean peninsula with the annual mean dry deposition of 2.1∼490 kilo-tons and the annual mean wet deposition of 1.5∼65 kilo-tons.

  • PDF