• 제목/요약/키워드: WC-based cermet

검색결과 3건 처리시간 0.016초

고속 화염 용사 공정으로 제조된 WC계 및 Cr3C2계 Cermet 코팅 소재의 미세조직 및 마모 특성 (Microstructural and Wear Properties of WC-based and Cr3C2-based Cermet Coating Materials Manufactured with High Velocity Oxygen Fuel Process)

  • 강연지;함기수;김형준;윤상훈;이기안
    • 한국분말재료학회지
    • /
    • 제25권5호
    • /
    • pp.408-414
    • /
    • 2018
  • This study investigates the microstructure and wear properties of cermet (ceramic + metal) coating materials manufactured using high velocity oxygen fuel (HVOF) process. Three types of HVOF coating layers are formed by depositing WC-12Co, WC-20Cr-7Ni, and Cr3C2-20NiCr (wt.%) powders on S45C steel substrate. The porosities of the coating layers are $1{\pm}0.5%$ for all three specimens. Microstructural analysis confirms the formation of second carbide phases of $W_2C$, $Co_6W_6C$, and $Cr_7C_3$ owing to decarburizing of WC phases on WC-based coating layers. In the case of WC-12Co coating, which has a high ratio of $W_2C$ phase with high brittleness, the interface property between the carbide and the metal binder slightly decreases. In the $Cr_3C_2-20CrNi$ coating layer, decarburizing almost does not occur, but fine cavities exist between the splats. The wear loss occurs in the descending order of $Cr_3C_2-20NiCr$, WC-12Co, and WC-20Cr-7Ni, where WC-20Cr-7Ni achieves the highest wear resistance property. It can be inferred that the ratio of the carbide and the binding properties between carbide-binder and binder-binder in a cermet coating material manufactured with HVOF as the primary factors determine the wear properties of the cermet coating material.

냉간단조 금형 WC-Co합금의 인장시험방법 개발 및 물성평가 (Development of Uniaxial Tensile Test Method to Evaluate Material Property of Tungsten Carbide-Cobalt Alloys for Cold Forging Dies)

  • 권인우;서영호;정기호
    • 소성∙가공
    • /
    • 제27권6호
    • /
    • pp.370-378
    • /
    • 2018
  • Cold forging, carried out at room temperature, leads to high dimensional accuracy and excellent surface integrity as compared to other forging methods such as warm and hot forgings. In the cold forging process, WC-Co (Tungsten Carbide-Cobalt) alloy is the mainly used material as a core dies because of its superior hardness and strength as compared to other structural materials. For cold forging, die life is the most significant factor because it is directly related to the manufacturing cost due to periodic die replacement in mass production. To investigate die life of WC-Co alloy for cold forging, mechanical properties such as strength and fatigue are essentially necessary. Generally, uniaxial tensile test and fatigue test are the most efficient and simplest testing method. However, uniaxial tension is not efficiently application to WC-Co alloy because of its sensitivity to alignment of the specimen due to its brittleness and difficulty in thread machining. In this study, shape of specimen, tools, and testing methods, which are appropriate for uniaxial tensile test for WC-Co alloy, are proposed. The test results such as Young's modulus, tensile strength and stress-strain curves are compared to those in previous literature to validate the proposed testing methods. Based on the validation of test results it was concluded that the newly developed testing method is applicable to other cemented carbides like Titanium carbides with high strength and brittleness, and also can be utilized to carry out fatigue tests for further investigation on die life of cold forging.

벌크비정질합금(BMG)의 절삭특성 평가 (Evaluation of Cutting Characteristics in Bulk Metallic Glasses)

  • 신형섭;최호연
    • 대한기계학회논문집A
    • /
    • 제36권6호
    • /
    • pp.591-598
    • /
    • 2012
  • 본 연구에서는 CNC선반을 사용하여 다양한 공구재질과 절삭속도에서 벌크금속유리(BMG)의 절삭 특성을 평가하였다. 선반가공시 Zr-기 BMG의 표면거칠기와 칩 형상을 관찰하여 가공조건에 따른 절삭력과 공구툴 마모 등 절삭 특성을 비교 검토하였다. 직경 8 mm $Zr_{50}Cu_{40}Al_{10}$ BMG시험편의 절삭에는 네 종류의 절삭공구를 사용하였다. 가공후 BMG 시험편의 표면거칠기를 측정하였고, 표면거칠기에 미치는 공구 회전속도의 영향을 조사하였다. 회전속도가 빠를수록 낮은 표면거칠기를 나타내었고, 공구 재질의 영향도 크게 나타났다. 칩 형상의 관찰 결과, 산화를 일으키지 않은 BMG 칩은 단열 전단띠 발생과 함께 나선형상의 형태를 나타내지만, 산화를 일으킨 칩은 국부적으로 용융과 함께 칩들이 뭉치는 현상을 나타내었다. BMG시험편을 가공하는 동안 발생한 절삭력은 TiN-WC에서 가장 큰 값을 나타내고, PCD가 그 다음, Cermet툴에서 가장 작은 값을 나타내었다.