• Title/Summary/Keyword: WC-Co carbide

Search Result 97, Processing Time 0.023 seconds

WC-Co 초경합금의 산화거동 (Oxidation Behavior of WC-Co Hardmetal)

  • 이길근;권한상;하국현
    • 한국분말재료학회지
    • /
    • 제11권2호
    • /
    • pp.111-117
    • /
    • 2004
  • The oxidation behavior of 91 WC-9Co hardmetal in weight percentage has been studied in the present work as a part of the development of recycling process. The morphological and compositional changes of the WC-Co hardmetal with oxidation time at 90$0^{\circ}C$ were analyzed by using surface observation and X-ray diffraction. respective]y. As the oxidation time increased, the WC-Co hardmetal was continuously expanded to form porous oxide mixtures of $CoWO_4$ and $WO_3$. The morphology of porous oxide mixture was basically dependent on initial shape of the WC-Co hardmetal. From thermo-gravimetric (TG) analysis, it was found that the oxidation rate was increased with increasing oxidation temperature and oxygen content in the flowing atmospheric gas. The fraction of oxidation versus time curves showed S-curve relationship at a given of oxidation temperature. These oxidation behaviors of the WC-Co hardmetal were discussed in terms of previously proposed kinetic models.

초경소재 재활용을 위한 플랫 엔드밀공구의 재연삭 효과 (Regrinding Effect of Flat End-Mill Tool for Recycling of Tungsten Carbide (WC-Co) Material)

  • 강명창;김민욱;권동희;박인덕;정영근
    • 한국재료학회지
    • /
    • 제18권12호
    • /
    • pp.635-639
    • /
    • 2008
  • In this paper, experimental studies of the regrinding of tungsten carbide (WC-Co) tools for high-speed machining were conducted. Regrinding and a subsequent evaluation test were carried out for a flat endmill tool with diameters of 10 mm and 3 mm using a CNC five-axis tool grinder and a CNC three-axis machining center. Tool wear on the two types of endmill tools increased as the cutting length increased, and the tool wear was not influenced by the regrinding state. In case of the micro endmill with a tool diameter of 3 mm, the effective regrinding time was determined for a flank wear threshold of 0.3 mm considering the tool life according to cutting length. The tool lives of the 10 mm and 3 mm endmill tools were increased by 80% and 72%, respectively. This conclusion proves the Feasibility of the recycling of tungsten carbide materials in the high-speed machining of high-hardened materials for industrial applications.

Co첨가에 의한 WC의 비정상입성장 (Effect of Co additive on the Abnormal Grain Growth of WC)

  • 이동범;채기웅
    • 한국세라믹학회지
    • /
    • 제41권2호
    • /
    • pp.131-135
    • /
    • 2004
  • WC에 소량의 Co를 첨가하여 그에 따른 미세조직의 변화를 관찰하였다. 순수한 WC를 성형하여 그 윗부분에 Co를 올려놓고 195$0^{\circ}C$에서 소결을 행한 결과, WC시편에서는 Co상이 놓여 액상을 형성한 영역으로부터 거리에 따라 입자의 크기와 모양이 다른 활발한 비정상입성장이 관찰되었다. 그러나, Co상이 놓인 영역으로부터 떨어진 시편 아래 영역에서는 낮은 치밀화와 함께 비정상입성장은 일어나지 않았다. 즉, Co 액상량은 WC의 비정상입성장 현상에 지대한 영향을 주었으며, 이러한 비정장입정장 현상은 2차원 핵생성 기구와 그에 따른 입성장기구로 설명이 가능하였다.

Hybrid Composite Nano-sized WC-Co Cemented Carbide

  • Park, Sun-Yong;Lee, Wan-Jae
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.640-641
    • /
    • 2006
  • To improve the mechanical properties of WC-Co cemented carbides, the dual composite was studied. The compositions of granule and matrix were nano-sized WC-6 wt% Co(granule) and normal sized WC-20 wt% Co(matrix), respectively. The granules were grouped 50, 100 and $150\;{\mu}m$ and mixed with WC and Co powders as the volume fractions of granule to matrix were 50 to 50, 40 to 60 and 30 to 70. These compacts were sintered at $1380^{\circ}C$ for 10 minutes in vacuum. The microstructure, transverse rupture strength and wear resistance were investigated.

  • PDF

폐초경 스크랩 코발트 침출용액으로부터 옥살산 및 수산화물 침전에 의한 코발트 분말 회수 (Cobalt Recovery by Oxalic Acid and Hydroxide Precipitation from Waste Cemented Carbide Scrap Cobalt Leaching Solution)

  • 이재성;김민구;김슬기;이동주
    • 한국분말재료학회지
    • /
    • 제28권6호
    • /
    • pp.497-501
    • /
    • 2021
  • Cobalt (Co) is mainly used to prepare cathode materials for lithium-ion batteries (LIBs) and binder metals for WC-Co hard metals. Developing an effective method for recovering Co from WC-Co waste sludge is of immense significance. In this study, Co is extracted from waste cemented carbide soft scrap via mechanochemical milling. The leaching ratio of Co reaches approximately 93%, and the leached solution, from which impurities except nickel are removed by pH titration, exhibits a purity of approximately 97%. The titrated aqueous Co salts are precipitated using oxalic acid and hydroxide precipitation, and the effects of the precipitating agent (oxalic acid and hydroxide) on the cobalt microstructure are investigated. It is confirmed that the type of Co compound and the crystal growth direction change according to the precipitation method, both of which affect the microstructure of the cobalt powders. This novel mechanochemical process is of significant importance for the recovery of Co from waste WC-Co hard metal. The recycled Co can be applied as a cemented carbide binder or a cathode material for lithium secondary batteries.

화학기상응축법에 의한 나노구조 텅스텐카바이드 분말의 제조와 미세구조 변화 (Synthesis and Microstructural Changes of Nanostructured Tungsten Carbide Powder by Chemical Vapor Condensation Process)

  • 김병기;김진천;하국현;최철진
    • 한국분말재료학회지
    • /
    • 제9권3호
    • /
    • pp.174-181
    • /
    • 2002
  • Nanosized tungsten carbide powders were synthesized by the chemical vapor condensation(CVC) process using the pyrolysis of tungsten hexacarbonyl($W(CO)_6$). The effect of CVC parameters on the formation and the microstructural change of as-prepared powders were studied by XRD, BET and TEM. The loosely agglomerated nanosized tungsten-carbide($WC_{1-x}$) particles having the smooth rounded tetragonal shape could be obtained below $1000^{\circ}C$ in argon and air atmosphere respectively. The grain size of powders was decreased from 53 nm to 28 nm with increasing reaction temperature. The increase of particle size with reaction temperature represented that the condensation of precursor vapor dominated the powder formation in CVC reactor. The powder prepared at $1000^{\circ}C$ was consisted of the pure W and cubic tungsten-carbide ($WC_{1-x}$), and their surfaces had irregular shape because the pure W was formed on the $WC_{1-x}$ powders. The $WC_{1-x}$ and W powders having the average particles size of about 5 nm were produced in vacuum.

기상응축법으로 제조한 나노 WC및 WC-Co분말의 후속 열처리에 의한 상 및 협상 변화 (Change of Particle Morphology and Ingredient Phase of WC and WC-Co Nanopowders Fabricated by Chemical Vapor Condensation during Subsequent Heat-Treatment)

  • 김진천;하국현;김병기
    • 한국분말재료학회지
    • /
    • 제11권2호
    • /
    • pp.124-129
    • /
    • 2004
  • Nanosized WC and WC-Co powders were synthesised by chemical vapor condensation(CVC) process using the pyrolysis of tungsten hexacarbonyl(W(CO)$_6$) and cobalt octacarbonyl(Co$_2$(CO)$_8$). The microstructural changes and phase evolution of the CVC powders during post heat-treatment were studied using the XRD, FE-SEM, TEM, and ICP-MS. CVC powders were consisted of the loosely agglomerated sub-stoichimetric WC$_{1-x}$ and the long-chain Co nanopowders. The sub-stochiometric CVC WC and WC-Co powders were carburized using the mixture gas of CH$_4$-H$_2$ in the temperature range of 730-85$0^{\circ}C$. Carbon content of CVC powder controlled by the gas phase carburization at 85$0^{\circ}C$ was well matched with the theoretical carbon sioichiometry of WC, 6.13 wt%. During the gas phase carburization, the particle size of WC increased from 20 nm to 40 nm and the long chain structure of Co powders disappeared.

냉간단조 금형 WC-Co합금의 인장시험방법 개발 및 물성평가 (Development of Uniaxial Tensile Test Method to Evaluate Material Property of Tungsten Carbide-Cobalt Alloys for Cold Forging Dies)

  • 권인우;서영호;정기호
    • 소성∙가공
    • /
    • 제27권6호
    • /
    • pp.370-378
    • /
    • 2018
  • Cold forging, carried out at room temperature, leads to high dimensional accuracy and excellent surface integrity as compared to other forging methods such as warm and hot forgings. In the cold forging process, WC-Co (Tungsten Carbide-Cobalt) alloy is the mainly used material as a core dies because of its superior hardness and strength as compared to other structural materials. For cold forging, die life is the most significant factor because it is directly related to the manufacturing cost due to periodic die replacement in mass production. To investigate die life of WC-Co alloy for cold forging, mechanical properties such as strength and fatigue are essentially necessary. Generally, uniaxial tensile test and fatigue test are the most efficient and simplest testing method. However, uniaxial tension is not efficiently application to WC-Co alloy because of its sensitivity to alignment of the specimen due to its brittleness and difficulty in thread machining. In this study, shape of specimen, tools, and testing methods, which are appropriate for uniaxial tensile test for WC-Co alloy, are proposed. The test results such as Young's modulus, tensile strength and stress-strain curves are compared to those in previous literature to validate the proposed testing methods. Based on the validation of test results it was concluded that the newly developed testing method is applicable to other cemented carbides like Titanium carbides with high strength and brittleness, and also can be utilized to carry out fatigue tests for further investigation on die life of cold forging.

초경합금기판 위에 성장되는 다이아몬드 막의 특성 (Characteristics of Diamond Films Deposited on Cemented Tungsten Carbide Substrate)

  • 김봉준;박상현;박재윤
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제53권7호
    • /
    • pp.387-394
    • /
    • 2004
  • Diamond films were deposited on the cemented tungsten carbide WC-Co cutting insert substrates by using both microwave plasma chemical vapor deposition(MWPCVD) and radio frequency plasma chemical vapor deposition (RFPCVD) from $CH_4$$-H_2$$-O_2$ gas mixture. Scanning electron microscopy and X-ray diffraction techniques were used to investigate the microstructure and phase analysis of the materials and Raman spectrometry was used to characterize the quality of the diamond coating. Diamond films deposited using MWPCVD from $CH_4$$-H_2$$-O_2$ gas mixture show a dense, uniform, well faceted and polycrystalline morphology. The compressive stress in the diamond film was estimated to be (1.0∼3.6)$\pm$0.9 GPa. Diamond films which were deposited on the WC-Co cutting insert substrates by RFPCVD from $CH_4$$-H_2$$-O_2$ gas mixture show relatively good adhesion, very uniform, dense and polycrystalline morphology.

텅스텐 카바이드와 코발트 혼합물의 선택적 레이저 소결 (Selective Laser Sintering of WC-Co Mixture)

  • 김광희;조셉비만
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2001년도 추계학술대회 논문집
    • /
    • pp.269-274
    • /
    • 2001
  • This paper describes the experimental results on direct selective laser sintering of WC-Co mixture. The experiments were carried out within an air, argon and nitrogen atmosphere. The main problem occurred during sintering within an air atmosphere was oxidation of WC-Co mixture. As the power of laser is increased and scanning speed is decreased, more severe oxidation takes place. Within an argon and nitrogen atmosphere the oxidation is reduced significantly. As the energy density is increased the thickness of the sintered layer is increased.

  • PDF