• 제목/요약/키워드: WC-Co carbide

검색결과 97건 처리시간 0.031초

고속 화염 용사 공정으로 제조된 WC계 및 Cr3C2계 Cermet 코팅 소재의 미세조직 및 마모 특성 (Microstructural and Wear Properties of WC-based and Cr3C2-based Cermet Coating Materials Manufactured with High Velocity Oxygen Fuel Process)

  • 강연지;함기수;김형준;윤상훈;이기안
    • 한국분말재료학회지
    • /
    • 제25권5호
    • /
    • pp.408-414
    • /
    • 2018
  • This study investigates the microstructure and wear properties of cermet (ceramic + metal) coating materials manufactured using high velocity oxygen fuel (HVOF) process. Three types of HVOF coating layers are formed by depositing WC-12Co, WC-20Cr-7Ni, and Cr3C2-20NiCr (wt.%) powders on S45C steel substrate. The porosities of the coating layers are $1{\pm}0.5%$ for all three specimens. Microstructural analysis confirms the formation of second carbide phases of $W_2C$, $Co_6W_6C$, and $Cr_7C_3$ owing to decarburizing of WC phases on WC-based coating layers. In the case of WC-12Co coating, which has a high ratio of $W_2C$ phase with high brittleness, the interface property between the carbide and the metal binder slightly decreases. In the $Cr_3C_2-20CrNi$ coating layer, decarburizing almost does not occur, but fine cavities exist between the splats. The wear loss occurs in the descending order of $Cr_3C_2-20NiCr$, WC-12Co, and WC-20Cr-7Ni, where WC-20Cr-7Ni achieves the highest wear resistance property. It can be inferred that the ratio of the carbide and the binding properties between carbide-binder and binder-binder in a cermet coating material manufactured with HVOF as the primary factors determine the wear properties of the cermet coating material.

WC/Co 초경 스크랩 산화물의 고체탄소에 의한 환원/침탄 (Carbothermal Reduction of Oxide Powder Prepared from Waste WC/Co Hardmetal by Solid Carbon)

  • 이길근;하국현
    • 한국분말재료학회지
    • /
    • 제12권2호
    • /
    • pp.112-116
    • /
    • 2005
  • In the present study, the focus is on the analysis of carbothermal reduction of oxide powder prepared from waste WC/Co hardmetal by solid carbon under a stream of argon for the recycling of the WC/Co hard-metal. The oxide powder was prepared by the combination of the oxidation and crushing processes using the waste $WC-8 wt.\%Co$ hardmetal as the raw material. This oxide powder was mixed with carbon black, and then this mixture was carbothermally reduced under a flowing argon atmosphere. The changes in the phase structure and gases discharge of the mixture during carbothermal reduction was analysed using XRD and gas analyzer. The oxide powder prepared from waste $WC-8wt.\%Co$ hardmetal has a mixture of $WO_{3} and CoWO_{4}$. This oxide powder reduced at about $850^{\circ}C$, formed tungsten carbides at about $950^{\circ}C$, and then fully transformed to a mixed state of tungsten carbide (WC) and cobalt at about $1100^{\circ}C$ by solid carbon under a stream of argon. The WC/Co composite powder synthesized at $1000^{\circ}C$ for 6 hours from oxide powder of waste $WC-8wt.\%Co$ hardmetal has an average particle size of $0.3 {\mu}m$.

PCD 초경 복합 원형 톱 개발과 공구마모 비교 (Development of Polycrystalline Diamond Tungsten Carbide Combination Circular Saw and Comparison of Tool Wear)

  • 주창민;박윤옥;김수진
    • 한국기계가공학회지
    • /
    • 제20권9호
    • /
    • pp.48-56
    • /
    • 2021
  • Tungsten carbide (WC) circular saws have been widely used to cut plywood. Recently, expensive polycrystalline diamond (PCD) were adopted to extend the tool life of circular saws. This study developed a PCD-WC combination circular saw and compared its performance with that of existing WC and PCD saws. Flank wear of WC saw blades and edge chipping of rectangular PCD was observed during the experiments. The PCD-WC saw replaced half of the chamfered teeth with PCD and applied tough WC for all rectangular teeth. In the experiments, edge chipping was not observed in rectangular WC teeth and the flank wear of chamfered teeth was decreased compared with that of conventional circular saws.

다이아몬드 연마재 입도가 초경 습식신선 다이스 수명에 미치는 영향 (The Influence of Diamond Abrasive Size on the Life of Tungsten Carbide Wet Drawing Dies)

  • 이상곤;김민안;고대철;김병민
    • 소성∙가공
    • /
    • 제15권7호
    • /
    • pp.518-523
    • /
    • 2006
  • Wet wire drawing of brass coated steel wire, used for tire reinforcement, is realized with Tungsten Carbide(WC) dies sintered with a cobalt(Co) binder. Dies wear represents an important limitation to the production process and cost savings. Several parameters, such as Co content, WC grain size of tungsten carbide, sintering conditions, and so on, affect on the wear of the drawing die. In this study, the effect of the diamond abrasive particle size on the life of the WC centered dies of the wet wire drawing was investigated. Wet wire drawing experiments were carried out on a wet wire drawing machine. From the experiments, the dies life, dies fracture, wire surface roughness, and wire breaks were investigated. From the results, it was found that the wear of the WC dies increased with the increase in the diamond abrasive particle size.

Friction and Wear of Pressureless Sintered Ti(C,N)-WC Ceramics

  • Park, Dong-Soo;Yun, Shin-Sang;Han, Byoung-Dong;Kim, Hai-Doo
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.211-212
    • /
    • 2002
  • Friction and wear of pressureless sintered Ti(C,N)-WC ceramics were studied using a ball-on-reciprocating flat apparatus in open air. The silicon nitride ball and the cemented carbide (WC-Co) ball were used against the Ti(C,N)-WC plate samples. The friction coefficients of the Ti(C,N)-WC samples against the silicon nitride ball and the cemented carbide ball were about 0.57 and 0.3, respectively. The wear coefficient of the sample without WC addition was 5 times as large as that of the sample with 10 mole % WC addition when tested against the silicon nitride ball under 98 N. The higher wear coefficient of Ti(C,N)-0WC was explained in part by larger grain size. Wear occurred mainly by grain dislodgment after intergranular cracking mainly caused by the accumulated stress within the grains.

  • PDF

초경합금 슬러지 재활용 공정 산물을 활용한 텅스텐 탄화물 제조 및 특성 평가 (Preparation and Characterization of Tungsten Carbide Using Products of Hard Metal Sludge Recycling Process)

  • 권한중;신정민
    • 자원리싸이클링
    • /
    • 제31권4호
    • /
    • pp.19-25
    • /
    • 2022
  • 본 연구에서는 텅스텐산암모늄(APT, Ammonium Paratungstate, (NH4)10[W12O46H10])이 사용되지 않는 친환경 초경합금 슬러지 재활용 공정을 통해 초경합금 주원료인 텅스텐 탄화물 분말을 합성하고자 하였다. 초경합금 슬러지에 대한 산 처리를 통해 텅스텐산(H2WO4) 추출 및 결정화를 수행하고 결정화된 텅스텐산을 텅스텐 탄화물의 원료로 사용하였다. H2WO4에 대한 탄화환원을 통해 텅스텐탄화물 (WC) 분말이 합성되었고 합성된 WC 분말은 200~700nm 수준의 결정립으로 구성되어 있음이 확인되었다. 이는 현재 절삭공구로 가장 널리 사용되는 1~3㎛ 입도의 상용 WC 분말에 비해 미세한 것으로 텅스텐 금속 분말에 대한 고온(1,700℃ 이상) 고상 탄화법을 통해 제조되는 상용 WC 분말과 달리 H2WO4 나노 결정립에 대한 탄화환원을 통해 WC 분말이 합성되었기 때문으로 사료된다. H2WO4로 부터 합성된 WC 분말의 경우 탄화환원에 의해 탄소의 제거가 수월하여 상용 WC 분말에 비해 잔류 탄소가 적은 것으로 확인되었으며 작은 결정립 크기로 인해 초경합금 원료로 사용되었을 때 WC-Co 복합체 내 WC 입자의 성장이 활발하게 일어나 H2WO4로부터 합성된 WC 분말이 적용된 WC-Co 복합체의 경우 WC 입자가 조대하고 파괴인성이 우수한 것으로 확인되었다.

냉간 단조 공정의 유한 요소 해석에 기반한 WC-Co 초경 금형의 파손 위험 영역 평가 (Potential Damage Region Investigation of WC-Co Cemented Carbide Die Based on Finite Element Analysis of Cold Forging Process)

  • 류성현;정선호;정헌영;김경일;조규섭;노우람
    • 소성∙가공
    • /
    • 제31권6호
    • /
    • pp.376-383
    • /
    • 2022
  • The potential damage region of a WC-Co cemented carbide die is investigated for cold forging process of a wheel-nut by numerical simulation with its chemical composition considered. Numerical simulation is utilized to calculate internal stress, especially for the WC-Co die, during the forging process. Finite element model is established, in which the elasto-plastic properties are applied to the work-piece of bulk steel, and elastic properties are considered for the lower die insert of the WC-Co alloy. This stress analysis enables to distinguish the potential damage regions of the WC-Co die. The regions from calculation are comparatively analyzed along with the crack area observed in the die after repetitive manufacturing. Effect of chemical composition of the WC-Co is also evaluated on characteristics of potential damage region of the die with variance of mechanical properties considered. Derived from Mohr-Coulomb fracture model, furthermore, a new stress index is presented and used for die stress analysis. This index inherently considers hydrostatic pressure and is then capable of deducing wide range of its distribution for representing stress state by modification of its parameter implying pressure sensitivity.

Thermally Sprayed WC-Co 코팅층의 미세조직 및 특성 (Microstructural Characteristics of Thermally Sprayed WC-Co Coatings)

  • 강희수;백경호
    • 한국분말재료학회지
    • /
    • 제16권1호
    • /
    • pp.56-62
    • /
    • 2009
  • The degree of WC decomposition and hardness of thermally sprayed WC-Co coatings are important factors determining the wear resistance of the coatings. In order to minimize the degree of decomposition and to increase hardness, the effects of processing parameters of high velocity oxyfuel(HVOF) spraying on various characteristics of nanostructured WC-12Co coating have been evaluated by an experimental design method. The HVOF sprayed WC-12Co coatings consisted of various carbide phases including WC, $W_2C$ and $W_3Co_3C$, with a much reduced carbon content. The degree of WC decomposition and decarburization was affected by changing barrel length and spray distance. The hardness of WC-Co coatings was strongly related to droplet temperature at substrate, and increased with increasing fuel addition and/or decreasing spray distance. The effective control of processing parameters was discussed in detail for manufacturing a high performance WC-Co coating.

WC기 초경합금중 WC/WC界面의 구조와 입계편석 (Stucture and Intergranular Segregation of WC/WC Grain Boundaries in WC-Based Cemented Carbides)

  • 신순기
    • 한국재료학회지
    • /
    • 제10권9호
    • /
    • pp.612-618
    • /
    • 2000
  • WC-Co와 WC-Co 초경합금중 WC/WC 입계의 구조와 입계 편석상태를 알아볼 목적으로 HRTEM과 EDS를 이용하여 연구하였다. 일부의 입계들은 액상에 의하여 분리된 상태로 관찰되었으나, 상당수는 원자적 상태의 연소계면이었다. 또 연속계면 중 WC-Co 합금에서는 Co 상이 편석되어 있었으며, WC-VC-Co 합금에서는 Co와 V이 동시에 편석되어 있음을 알 수 있었다. 그 편석의 폭은 약6nm이었다. 연속 계면 중 V의 편석은 소결 또는 열처리 시에 일어나는 입계 이동을 억제하는 데 효과적인 역할을 할 것으로 여겨졌다. 동시에 이것은 WC-Co 초경합금에서 VC 첨가에 의한 입성상 억제기구를 설명할 수 있는 것으로 사료되었다.

  • PDF