• Title/Summary/Keyword: WBAN (Wireless Body Area Network)

Search Result 94, Processing Time 0.022 seconds

Ubiquitous u-Health System using RFID & ZigBee (RFID와 ZigBee를 이용한 유비쿼터스 u-Health 시스템 구현)

  • Kim Jin-Tai;Kwon Youngmi
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.1 s.343
    • /
    • pp.79-88
    • /
    • 2006
  • In this paper, we designed and implemented ubiquitous u-Health system using RFE and ZigBee. We made a wireless protocol Kit which combines RFE Tag recognition and ZigBee data communication capability. The software is designed and developed on the TinyOS. Wireless communication technologies which hold multi-protocol stacks with RFID and result in the wireless ubiquitous world could be Bluetooth, ZigBee, 802.11x WLAN and so on. The environments that the suggested u-Health system may be used is un-manned nursing, which would be utilized in dense sensor networks such as a hospital. The the size of devices with RFID and ZigBee will be so smaller and smaller as a bracelet, a wrist watch and a ring. The combined wireless RFID-ZigBee system could be applied to applications which requires some actions corresponding to the collected (or sensed) information in WBAN(Wireless Body Area Network) and/or WPAN(Wireless Person Area Network). The proposed ubiquitous u-Health system displays some text-type alert message on LCD which is attached to the system or gives voice alert message to the adequate node users. RFE will be used as various combinations with other wireless technologies for some application-specific purposes.

A Life-Critical Data Transmission Scheme for Wireless Body Area Networks (무선 인체 통신 네트워크를 위한 응급데이터 전송기법)

  • Choi, Won-Suk;Cho, Sung-Rae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.12B
    • /
    • pp.1329-1335
    • /
    • 2009
  • In this paper, we propose a new medium access control protocol referred to as DCTW (Dual Channel Transmission Scheme for wireless body area networks). Wireless body area networks (WBANs) requires prioritization mechanism for life-critical data to transmit the data as early as possible. The proposed DCTW exploits a narrow band for transmitting life-critical data while it uses a broadband channel to transmit normal data. Since the narrow band is dedicated to life-critical data, the DCTW can effectively reduce the delay of life-critical data transmission. Through extensive simulation, we show the DCTW outperforms other existing schemes.

Geohashed Spatial Index Method for a Location-Aware WBAN Data Monitoring System Based on NoSQL

  • Li, Yan;Kim, Dongho;Shin, Byeong-Seok
    • Journal of Information Processing Systems
    • /
    • v.12 no.2
    • /
    • pp.263-274
    • /
    • 2016
  • The exceptional development of electronic device technology, the miniaturization of mobile devices, and the development of telecommunication technology has made it possible to monitor human biometric data anywhere and anytime by using different types of wearable or embedded sensors. In daily life, mobile devices can collect wireless body area network (WBAN) data, and the co-collected location data is also important for disease analysis. In order to efficiently analyze WBAN data, including location information and support medical analysis services, we propose a geohash-based spatial index method for a location-aware WBAN data monitoring system on the NoSQL database system, which uses an R-tree-based global tree to organize the real-time location data of a patient and a B-tree-based local tree to manage historical data. This type of spatial index method is a support cloud-based location-aware WBAN data monitoring system. In order to evaluate the proposed method, we built a system that can support a JavaScript Object Notation (JSON) and Binary JSON (BSON) document data on mobile gateway devices. The proposed spatial index method can efficiently process location-based queries for medical signal monitoring. In order to evaluate our index method, we simulated a small system on MongoDB with our proposed index method, which is a document-based NoSQL database system, and evaluated its performance.

Area-Optimized Multi-Standard AES-CCM Security Engine for IEEE 802.15.4 / 802.15.6

  • Choi, Injun;Kim, Ji-Hoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.3
    • /
    • pp.293-299
    • /
    • 2016
  • Recently, as IoT (Internet of Things) becomes more important, low cost implementation of sensor nodes also becomes critical issues for two well-known standards, IEEE 802.15.4 and IEEE 802.15.6 which stands for WPAN (Wireless Personal Area Network) and WBAN (Wireless Body Area Network), respectively. This paper presents the area-optimized AES-CCM (Advanced Encryption Standard - Counter with CBC-MAC) hardware security engine which can support both IEEE 802.15.4 and IEEE 802.15.6 standards. First, for the low cost design, we propose the 8-bit AES encryption core with the S-box that consists of fully combinational logic based on composite field arithmetic. We also exploit the toggle method to reduce the complexity of design further by reusing the AES core for performing two operation mode of AES-CCM. The implementation results show that the total gate count of proposed AES-CCM security engine can be reduced by up to 42.5% compared to the conventional design.

Design of a Miniaturized High-Isolation Diversity Antenna for Wearable WBAN Applications

  • Kim, Seongjin;Kwon, Kyeol;Choi, Jaehoon
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.1
    • /
    • pp.28-33
    • /
    • 2013
  • This paper proposes a miniaturized high-isolation diversity antenna for wearable wireless body area network (WBAN) applications. An inverted-F type radiating element is used to reduce the overall dimension of the proposed antenna to $30mm{\times}30mm{\times}2.5mm$. The antenna performance on the human body phantom is analyzed through simulation and the performance of the fabricated antenna is verified by comparing the measured data with that of the simulation when the antenna is placed on a semi-solid flat phantom with equivalent electrical properties of a human body. The fabricated antenna has a 10 dB return loss bandwidth over the Industrial Scientific Medical (ISM) band from 2.35 GHz to 2.71 GHz and isolation is higher than 28 dB at 2.45 GHz. The measured peak gain of antenna elements # 1 and # 2 is -0.43 dBi and -0.54 dBi, respectively. Performance parameters are analyzed, including envelope correlation coefficient (ECC), mean effective gain (MEG), and the MEG ratio. In addition, the specific absorption ratio (SAR) distributions of the proposed antenna are measured for consideration in use.

The Medium Access Scheduling Scheme for Efficient Data Transmission in Wireless Body Area Network (WBAN 환경에서 효율적 데이터 전송을 위한 매체 접근 스케줄링 기법)

  • Jang, EunMee;Park, TaeShin;Kim, JinHyuk;Choi, SangBan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.2
    • /
    • pp.16-27
    • /
    • 2017
  • IEEE 802.15.6 standard, a Wireless Body Area Network, aims to transfer not only medical data but also non-medical data, such as physical activity, streaming, multimedia game, living information, and entertainment. Services which transfer those data have very various data rates, intervals and frequencies of continuous access to a medium. Therefore, an efficient anti-collision operations and medium assigning operation have to be carried out when multiple nodes with different data rates are accessing shared medium. IEEE 802.15.6 standard for CSMA/CA medium access control method distributes access to the shared medium, transmits a control packet to avoid collision and checks status of the channel. This method is energy inefficient and causes overhead. These disadvantages conflict with the low power, low cost calculation requirement of wireless body area network, shall minimize such overhead for efficient wireless body area network operations. Therefore, in this paper, we propose a medium access scheduling scheme, which adjusts the time interval for accessing to the shared transmission medium according to the amount of data for generating respective sensor node, and a priority control algorithm, which temporarily adjusts the priority of the sensor node that causes transmission concession due to the data priority until next successful transmission to ensure fairness.

A Secure Medical Information Management System for Wireless Body Area Networks

  • Liu, Xiyao;Zhu, Yuesheng;Ge, Yu;Wu, Dajun;Zou, Beiji
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.221-237
    • /
    • 2016
  • The wireless body area networks (WBANs) consist of wearable computing devices and can support various healthcare-related applications. There exist two crucial issues when WBANs are utilized for healthcare applications. One is the protection of the sensitive biometric data transmitted over the insecure wireless channels. The other is the design of effective medical management mechanisms. In this paper, a secure medical information management system is proposed and implemented on a TinyOS-based WBAN test bed to simultaneously address these two issues. In this system, the electronic medical record (EMR) is bound to the biometric data with a novel fragile zero-watermarking scheme based on the modified visual secret sharing (MVSS). In this manner, the EMR can be utilized not only for medical management but also for data integrity checking. Additionally, both the biometric data and the EMR are encrypted, and the EMR is further protected by the MVSS. Our analysis and experimental results demonstrate that the proposed system not only protects the confidentialities of both the biometric data and the EMR but also offers reliable patient information authentication, explicit healthcare operation verification and undeniable doctor liability identification for WBANs.

WBAN MAC Protocols- Non-Saturation Modeling and Performance Analysis

  • Khan, Pervez;Ullah, Niamat;Kim, Hoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1462-1476
    • /
    • 2017
  • The current literature on discrete-time Markov chain (DTMC) based analysis of IEEE 802.15.6 MAC protocols for wireless body area networks (WBANs), do not consider the ACK timeout state, wherein the colliding nodes check the ill fate of their transmissions, while other contending nodes perform backoff check that slot as usual. In this paper, our DTMC model accurately captures the carrier sense multiple access with collision avoidance (CSMA/CA) mechanism of IEEE 802.15.6 medium access control (MAC) and allows the contending nodes performing backoff to utilize the ACK timeout slot during collisions. The compared rigorous results are obtained by considering a non-ideal channel in non-saturation conditions, and CSMA/CA parameters pertaining to UWB PHY of IEEE 802.15.6 MAC protocols.

Performance Analysis of the Underwater Acoustic Communication with Low Power Consumption by Sea Trials (해상실험을 통한 저전력 수중음향통신 기법의 성능 분석)

  • Lee, Tae-Jin;Kim, Ki-Man
    • Journal of Navigation and Port Research
    • /
    • v.35 no.10
    • /
    • pp.811-816
    • /
    • 2011
  • In this paper, we analysis to consider the performance of PSPM (Phase Shift Pulse-position Modulation), the one of the low power communication technique, in near-field underwater sound channel by sea trial. PSPM is a QPSK(Quadrature Phase Shift Keying) modulation combined with PPM(Pulse Position Modulation) for low power communication in WBAN(Wireless Body Area Network). It is known that the bandwidth efficiency of PSPM is lower than conventional PSK but the power efficiency increases. In this paper, we will analyze the BER performance of PSPM using data acquired from the sea trials. The BER of QPSK was $6.04{\times}10^{-2}$, PSPM was $3.5{\times}10^{-1}$. Also, PSNR of QPSK was 9.37 dB and in case of PSPM was 9.11 dB.

CDASA-CSMA/CA: Contention Differentiated Adaptive Slot Allocation CSMA-CA for Heterogeneous Data in Wireless Body Area Networks

  • Ullah, Fasee;Abdullah, Abdul Hanan;Abdul-Salaam, Gaddafi;Arshad, Marina Md;Masud, Farhan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.5835-5854
    • /
    • 2017
  • The implementation of IEEE 802.15.6 in Wireless Body Area Network (WBAN) is contention based. Meanwhile, IEEE 802.15.4 MAC provides limited 16 channels in the Superframe structure, making it unfit for N heterogeneous nature of patient's data. Also, the Beacon-enabled Carrier-Sense Multiple Access/Collision-Avoidance (CSMA/CA) scheduling access scheme in WBAN, allocates Contention-free Period (CAP) channels to emergency and non-emergency Biomedical Sensors (BMSs) using contention mechanism, increasing repetition in rounds. This reduces performance of the MAC protocol causing higher data collisions and delay, low data reliability, BMSs packet retransmissions and increased energy consumption. Moreover, it has no traffic differentiation method. This paper proposes a Low-delay Traffic-Aware Medium Access Control (LTA-MAC) protocol to provide sufficient channels with a higher bandwidth, and allocates them individually to non-emergency and emergency data. Also, a Contention Differentiated Adaptive Slot Allocation CSMA-CA (CDASA-CSMA/CA) for scheduling access scheme is proposed to reduce repetition in rounds, and assists in channels allocation to BMSs. Furthermore, an On-demand (OD) slot in the LTA-MAC to resolve the patient's data drops in the CSMA/CA scheme due to exceeding of threshold values in contentions is introduced. Simulation results demonstrate advantages of the proposed schemes over the IEEE 802.15.4 MAC and CSMA/CA scheme in terms of success rate, packet delivery delay, and energy consumption.