• Title/Summary/Keyword: WAsP Engineering

Search Result 12,967, Processing Time 0.058 seconds

Effect of pH and Initial Phosphorus Concentration on Phosphorus Removal by Aluminum Salts (알루미늄염에 의한 인 제거 시 pH와 초기 인 농도의 영향)

  • Park, Jeongwon;Kwak, Hyoeun;Min, Sojin;Chung, Hyung-Keun;Park, Pyung-Kyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.2
    • /
    • pp.123-130
    • /
    • 2016
  • Phosphorus (P) removal by aluminum sulfate solution was investigated with varying pH and initial P concentrations. P removal was the highest at around pH 6. The pH range where P removal occurred was slightly wider at higher initial P concentrations. Compared to theoretical calculations, it was confirmed that $AlPO_4$ precipitation was the main reason for P removal at low pH. At high pH, where there should be no $AlPO_4$ precipitates, the P removal by adsorption of amorphous $Al(OH)_3$ precipitates was experimentally observed. The P removal by adding amorphous $Al(OH)_3$ precipitates prepared before the adsorption experiments, however, was lower than that by injecting aluminum sulfate solution because the prepared precipitates became larger, leading to less specific surface area available for adsorption. Ions other than sulfate had little influence on P removal.

Facile Electrodeposition Technique for the Fabrication of MoP Cathode for Supercapacitor Application

  • Samanta, Prakas;Ghosh, Souvik;Murmu, Naresh Chandra;Lee, Joong Hee;Kuila, Tapas
    • Composites Research
    • /
    • v.34 no.6
    • /
    • pp.345-349
    • /
    • 2021
  • The continued environmental pollution caused by fossil fuel consumption has prompted researchers around the world to develop environmentally friendly energy technologies. Electrochemical energy storage is the significant area of research in this development process, and the research significance of supercapacitors in this field is increasing. Herein, a simple electrodeposition synthetic route was explored to develop the MoP layered cathode material. The layered structure provided a highly ion-accessible surface for smooth and faster ion adsorption/desorption. After Fe was doped into MoP, the morphology of MoP changes and the electrochemical performance was significantly improved. Specific capacitance value of the binder-free FeMoP electrode was found to be 269 F g-1 at 2 A g-1 current density in 6 M aqueous KOH electrolyte. After adding Fe to MoP, an additional redox contribution was observed in the redox conversion from Fe3+ to Fe2+ redox pair, and the charge transfer kinetics of MoP was effectively improved. This research can provide guidance for the development of supercapacitor electrode materials through simple electrodeposition technology.

Effects of pH and Plating Bath Temperature on Formation of Eco-Friendly Electroless Ni-P Plating Film on Aluminum (알루미늄 위 친환경적 무전해 Ni-P 도금막 형성에 pH와 도금조 온도가 미치는 영향)

  • Gee, Hyun-Bae;Bin, Jung-Su;Lee, Youn-Seoung;Rha, Sa-Kyun
    • Korean Journal of Materials Research
    • /
    • v.32 no.9
    • /
    • pp.361-368
    • /
    • 2022
  • The overall process, from the pre-treatment of aluminum substrates to the eco-friendly neutral electroless Ni-P plating process, was observed, compared, and analysed. To remove the surface oxide layer on the aluminum substrate and aid Ni-P plating, a zincation process was carried out. After the second zincation treatment, it was confirmed that a mostly uniform Zn layer was formed and the surface oxide of aluminum was also removed. The Ni-P electroless plating films were formed on the secondary zincated aluminum substrate using electroless plating solutions of pH 4.5 and neutral pH 7.0, respectively, while changing the plating bath temperature. When a neutral pH7.0 electroless solution was used, the Ni-P plating layer was uniformly formed even at the plating bath temperature of 50 ℃, and the plating speed was remarkably increased as the bath temperature was increased. On the other hand, when a pH 4.5 Ni-P electroless solution was used, a Ni-P plating film was not formed at a plating bath temperature of 50 ℃, and the plating speed was very slow compared to pH 7.0, although plating speed increased with increasing bath temperature. In the P contents, the P concentration of the neutral pH 7.0 Ni-P electroless plating layer was reduced by ~ 42.3 % compared to pH 4.5. Structurally, all of the Ni-P electroless plating layers formed in the pH 4.5 solution and the neutral (pH 7.0) solution had an amorphous crystal structure, as a Ni-P compound, regardless of the plating bath temperature.

p-n Heterojunction Composed of n-ZnO/p-Zn-doped InP

  • Shim, Eun-Sub;Kang, Hong-Seong;Kang, Jeong-Seok;Pang, Seong-Sik;Lee, Sang-Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.1
    • /
    • pp.1-3
    • /
    • 2002
  • A p-n junction was obtained by the deposition of an n-type ZnO thin film on a p-type Zn-doped InP substrate. The Zn-doped InP substrate has been made by the diffusion of Zn with sealed ampoule technique. The ZnO deposition process was performed by pulsed laser deposition (PLD). The p-n junction was formed and showed typical I-V characteristics. We will also discuss about the realization of an ultraviolet light-emitting diode (LED). The structure of n-ZnO/p-Zn-doped InP could be a good candidate for the realization of an ultraviolet light-emitting diode or an ultraviolet laser diode.

Development of a Portable and Disposable pH Sensor Based on Titanium Wire with High Electrochemical Sensing Performance (우수한 전기화학적 센싱 성능을 지닌 티타늄 와이어 기반의 휴대 및 일회용 pH 센서 개발)

  • Yoon, Eun Seop;Yoon, Jo Hee;Son, Seon Gyu;Kim, Seo Jin;Choi, Bong Gill
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.700-705
    • /
    • 2021
  • A portable and disposable pH sensor based on Ti wire was successfully developed for monitoring hydronium ion concentrations. A sensing electrode was prepared by electrochemically depositing iridium oxide onto a Ti wire, while a reference electrode was fabricated by coating Ag/AgCl ink on a Ti wire. Combining the two electrodes in the pH sensor enabled the collection of open circuit potential signals when the sensor was immersed in solutions of various pH values. The pH sensor exhibited excellent electrochemical sensing performance in terms of sensitivity, response time, repeatability, selectivity, and stability. To demonstrate point-of-measurement applications, the pH sensor was integrated with a wireless electronic module that could communicate with a mobile application. The portable pH sensor accurately measured pH changes in real samples. The results obtained were consistent with those of using a commercial pH meter.

Evaluation of seismic p-yp loops of pile-supported structures installed in saturated sand

  • Yun, Jungwon;Han, Jintae;Kim, Doyoon
    • Geomechanics and Engineering
    • /
    • v.30 no.6
    • /
    • pp.579-586
    • /
    • 2022
  • Pile-supported structures are installed on saturated sloping grounds, where the ground stiffness may decrease due to liquefaction during earthquakes. Thus, it is important to consider saturated sloping ground and pile interactions. In this study, we conduct a centrifuge test of a pile-supported structure, and analyze the p-yp loops, p-yp loops provide the correlation between the lateral pile deflection (yp) and lateral soil resistance (p). In the dry sand model (UV67), the p-yp loops stiffness increased as ground depth increased, and the p-yp loops stiffness was larger by approximately three times when the pile moved to the upslope direction, compared with when it moved to the downslope direction. In contrast, no significant difference was observed in the stiffness with the ground depth and pile moving direction in the saturated sand model (SV69). Furthermore, we identify the unstable zone based on the result of the lateral soil resistance (p). In the case of the SV69 model, the maximum depth of the unstable zone is five times larger than that of the dry sand model, and it was found that the saturated sand model was affected significantly by kinematic forces due to slope failure.

Effects of pH, molar ratios and pre-treatment on phosphorus recovery through struvite crystallization from effluent of anaerobically digested swine wastewater

  • Kim, Daegi;Min, Kyung Jin;Lee, Kwanyong;Yu, Min Sung;Park, Ki Young
    • Environmental Engineering Research
    • /
    • v.22 no.1
    • /
    • pp.12-18
    • /
    • 2017
  • Struvite precipitation has been proven to be an effective method in removing and recovering ammonia nitrogen (N) and phosphate phosphorus (P) from wastewater. In this study, effects of pH, molar ratios and pre-treatment of effluent of anaerobically digested swine wastewater were investigated to improve struvite crystallization. The magnesium : ammonium : phosphate ratio of 1.2 : 1.0 : 1.0 was found to be optimal, yet the molar ratio in the wastewater was 1 : 74.9 : 1.8. From the analysis, the optimum pH was between 8.0 and 9.0 for maximal phosphate P release and from 8.0 to 10.0 for maximal ammonia N and phosphate P removal from real wastewater. Analysis from Visual MINTEQ predicted the pH range of 7-11 for ammonia N and phosphate P removal and recovery as struvite. For pre-treatment, microwave pre-treatment was ineffective for phosphate P release but ultrasound pre-treatment showed up to 77.4% phosphate P release at 1,000 kJ/L of energy dose. Precipitates analysis showed that phosphorus and magnesium in the collected precipitate had almost same values as theoretical values, but the ammonia content was less than the theoretical value.

Fabrication and Calibration of pH Sensor Using Suspended CNT Nanosheet (부양형 탄소나노튜브 나노시트를 이용한 pH센서의 제작과 보정)

  • Ryu, Hyobong;Choi, WooSeok;An, Taechang;Heo, Joonseong;Lim, Geunbae
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.207-211
    • /
    • 2013
  • In this research, the pH sensor was developed using CNT nanosheet with Nafion coating for the advanced medical sensor such as a blood gas analyzer. The CNT nanosheet was formed by dielectrophoresis and water-meniscus between cantilever-type electrodes. Then, the process of the heat annealing and the Nafion coating was conducted for reducing contact resistance and giving proton selectivity respectively. We measured the response of the pH sensor as the electrolyte-gated CNT-nanosheet field effect transistor. The sensor showed a linear current ratio in a similar range of the normal blood pH. A calibration method for decreasing of the response variation among sensors has also been introduced. Coefficient of variance of the pH sensor was decreased by applying the calibration method. A linear relation between the calibrated response of the sensors and pH variance was also obtained. Finally, the pH sensor with a high resolution was fabricated and we verify the feasibility of the sensor by applying the calibration method.

Production of Poly(3-hydroxybutyrate) [P(3HB)] with High P(3HB) Content by Recombinant Escherichia coli Harboring the Alcaligenes latus P(3HB) Biosynthesis Genes and the E. coli ftsZ Gene

  • Choi, Jong-Il;Lee, Sang-Yup
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.6
    • /
    • pp.722-725
    • /
    • 1999
  • Filamentation-suppressed recombinant Escherichia coli strain harboring the Alcaligenes latus polyhydroxyalkanoate (PHA) biosynthesis genes and the E. coli ftsZ gene was constructed and cultivated for the production of poly(3-hydroxybutyrate) [P(3HB)] with high concentration and high content. By the pH-stat fed-batch culture of this recombinant E. coli strain XL1-Blue(pJC5), the final cell concentration and P(3HB) concentration obtained in 44.25h were 172.2g cell dry weight/l and 141.9g P(3HB)/l, respectively, resulting in productivity of 3.21g P(3HB)/l-h. More importantly, the P(3HB) content obtained was 82.4 wt %, which was significantly higher than that obtained with the recombinant E. coli harboring only the PHA biosynthesis genes.

  • PDF

Effect of Nutrients on the Production of Extracellular Enzymes for Decolorization of Reactive Blue 19 and Reactive Black 5

  • Lee Yu-Ri;Park Chul-Hwan;Lee Byung-Hwan;Han Eun-Jung;Kim Tak-Hyun;Lee Jin-Won;Kim Sang-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.226-231
    • /
    • 2006
  • Several white-rot fungi are able to produce extracellular lignin-degrading enzymes such as manganese peroxidase (MnP), lignin peroxidase (LiP), and laccase. In order to enhance the production of laccase and MnP using Trametes versicolor KCTC 16781 in suspension culture, the effects of major medium ingredients, such as carbon and nitrogen sources, on the production of the enzymes were investigated. The decolorization mechanism in terms of biodegradation and biosorption was also investigated. Among the carbon sources used, glucose showed the highest potential for the production of laccase and MnP. Ammonium tartrate was a good nitrogen source for the enzyme production. No significant difference in the laccase production was observed, when glucose concentration was varied between 5 g/l and 30 g/l. As the concentration of nitrogen source increased, a lower MnP activity was observed. The optimal C/N ratio was 25 for the production of laccase and MnP. When the concentrations of glucose and ammonium tartrate were simultaneously increased, the laccase and MnP activities increased dramatically. The maximum laccase and MnP activities were 33.7 U/ml at 72 h and 475 U/ml at 96 h, respectively, in the optimal condition. In this condition, over 90% decolorization efficiency was observed.