• Title/Summary/Keyword: WAVELETS

Search Result 268, Processing Time 0.027 seconds

Implementation Strategy for the Numerical Efficiency Improvement of the Multiscale Interpolation Wavelet-Galerkin Method

  • Seo Jeong Hun;Earmme Taemin;Jang Gang-Won;Kim Yoon Young
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.110-124
    • /
    • 2006
  • The multi scale wavelet-Galerkin method implemented in an adaptive manner has an advantage of obtaining accurate solutions with a substantially reduced number of interpolation points. The method is becoming popular, but its numerical efficiency still needs improvement. The objectives of this investigation are to present a new numerical scheme to improve the performance of the multi scale adaptive wavelet-Galerkin method and to give detailed implementation procedure. Specifically, the subdomain technique suitable for multiscale methods is developed and implemented. When the standard wavelet-Galerkin method is implemented without domain subdivision, the interaction between very long scale wavelets and very short scale wavelets leads to a poorly-sparse system matrix, which considerably worsens numerical efficiency for large-sized problems. The performance of the developed strategy is checked in terms of numerical costs such as the CPU time and memory size. Since the detailed implementation procedure including preprocessing and stiffness matrix construction is given, researchers having experiences in standard finite element implementation may be able to extend the multi scale method further or utilize some features of the multiscale method in their own applications.

3D Sound Diffusion Control Using Wavelets (웨이블릿을 이용한 입체음향의 확산감 제어)

  • 김익형;정의필
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.4
    • /
    • pp.23-29
    • /
    • 2003
  • In this paper, we propose an idea for the improved 3-D sound system using conventional stereo headphones to obtain a better sound diffusion from the mono-sound recorded at an anechoic chamber. We use the HRTF(Head Related Transfer Function) for the sound localization and the wavelet filter bank with time delay for the sound diffusion. And we test the modified HRTF with the various sampling rate. We investigate the effects of the 3-D sound depending on the length of time delay at lowest frequency band. Also the correlation coefficient of the signals between the left channel and the right channel is measured to identify the sound diffusion. At last we obtain the diffusion sound using Cool Edit for reverberation.

  • PDF

Supercompact Multiwavelets for Three Dimensional Flow Field Simulation (3차원 유동 시뮬레이션을 위한 Supercompact 다중 웨이블릿)

  • Yang, Seung-Cheol;Lee, Do-Hyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.12
    • /
    • pp.18-25
    • /
    • 2005
  • This paper presents a supercompact multi-wavelet scheme and its application to fluid simulation data. The supercompact wavelet method is an appropriate wavelet for fluid simulation data in the sense that it can provide compact support and avoid unnecessary interaction with remotely located data (e.g. across a shock discontinuity or vortices). thresholding for data compression is applied based on a covariance vector structure of multi-wavelets. The extension of this scheme to three dimensions is analyzed. The numerical tests demonstrate that it can allow various analytic advantages as well as large data compression ratios in actual practice.

Volume Data Modeling by Using Wavelets Transformation and Tetrahedrization (웨이브렛 변환과 사면체 분할을 이용한 볼륨 데이터 모델링)

  • Gwun, Ou-Bong;Lee, Kun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.4
    • /
    • pp.1081-1089
    • /
    • 1999
  • Volume data modeling is concerned with finding a mathematical function which represents the relationship implied by the 3D data. Modeling a volume data geometrically can visualize a volume data using surface graphics without voxelization. It has many merits in that it is fast and requires little memory. We proposes, a method based on wavelet transformation and tetrahedrization. we implement a prototype system based on the proposed method. Last, we evaluated the proposed method comparing it with marching cube algorithm. the evaluation results show that though the proposed method uses only 13% of the volume data, the images generated is as good as the images generated by the marching cubes algorithm.

  • PDF

Earthquake time-frequency analysis using a new compatible wavelet function family

  • Moghaddam, Amir Bazrafshan;Bagheripour, Mohammad H.
    • Earthquakes and Structures
    • /
    • v.3 no.6
    • /
    • pp.839-852
    • /
    • 2012
  • Earthquake records are often analyzed in various earthquake engineering problems, making time-frequency analysis for such records of primary concern. The best tool for such analysis appears to be based on wavelet functions; selection of which is not an easy task and is commonly carried through trial and error process. Furthermore, often a particular wavelet is adopted for analysis of various earthquakes irrespective of record's prime characteristics, e.g. wave's magnitude. A wavelet constructed based on records' characteristics may yield a more accurate solution and more efficient solution procedure in time-frequency analysis. In this study, a low-pass reconstruction filter is obtained for each earthquake record based on multi-resolution decomposition technique; the filter is then assigned to be the normalized version of the last approximation component with respect to its magnitude. The scaling and wavelet functions are computed using two-scale relations. The calculated wavelets are highly efficient in decomposing the original records as compared to other commonly used wavelets such as Daubechies2 wavelet. The method is further advantageous since it enables one to decompose the original record in such a way that a clear time-frequency resolution is obtained.

Study on Noise Reduction of ECG Signal using Wavelets Transform (심전도신호의 잡음제거를 위한 웨이브렛변환의 적용에 관한 연구)

  • Chang, Doo-Bong;Lee, Sang-Min;Shin, Tae-Min;Lee, Gun-Ki
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.8
    • /
    • pp.39-46
    • /
    • 1998
  • One of the main techniques for diagnosing heart disease is by examining the electrocardiogram(ECG). Many studies on detecting the QRS complex, P, and T waves have been performed because meaningful information is contained in these parameters. However, the earlier detection techniques can not effectively extract those parameters from the ECG that is severely contaminated by noise source. In this paper, we performed the extracting parameters from and recovering the ECG signal using wavelets transform that has recently been applying to various fields.

  • PDF

The Three Directional Separable Processing Method for Double-Density Wavelet Transformation Improvement (이중 밀도 웨이브렛 변환의 성능 향상을 위한 3방향 분리 처리 기법)

  • Shin, Jong Hong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.2
    • /
    • pp.131-143
    • /
    • 2012
  • This paper introduces the double-density discrete wavelet transform using 3 direction separable processing method, which is a discrete wavelet transform that combines the double-density discrete wavelet transform and quincunx sampling method, each of which has its own characteristics and advantages. The double-density discrete wavelet transform is nearly shift-invariant. But there is room for improvement because not all of the wavelets are directional. That is, although the double-density DWT utilizes more wavelets, some lack a dominant spatial orientation, which prevents them from being able to isolate those directions. The dual-tree discrete wavelet transform has a more computationally efficient approach to shift invariance. Also, the dual-tree discrete wavelet transform gives much better directional selectivity when filtering multidimensional signals. But this transformation has more cost complexity Because it needs eight digital filters. Therefor, we need to hybrid transform which has the more directional selection and the lower cost complexity. A solution to this problem is a the double-density discrete wavelet transform using 3 direction separable processing method. The proposed wavelet transformation services good performance in image and video processing fields.

Iterative Image Restoration Based on Wavelets for De-Noising and De-Ringing (잡음과 오류제거를 위한 웨이블렛기반 반복적 영상복원)

  • Lee Nam-Yong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.4
    • /
    • pp.271-280
    • /
    • 2004
  • This paper presents a new iterative image restoration algorithm with removal of boundary/object-oriented ringing, The proposed method is based on CGM(Conjugate Gradient Method) iterations with inter-wavelet shrinkage. The proposed method provides a fast restoration as much as CGM, while having adaptive do-noising and do-ringing by using wavelet shrinkage. In order to have effective do-noising and do-ringing simultaneously, the proposed method uses a space-dependent shrinkage rule. The improved performance of the proposed method over more traditional iterative image restoration algorithms such as LR(Lucy-Richardson) and CGM in do-noising and do-ringing is shown through numerical experiments.

  • PDF

Image Enhancement Techniques Based on Wavelets (웨이블릿을 이용한 영상개선 기법)

  • 이해성;변혜란;유지상
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.8B
    • /
    • pp.1400-1412
    • /
    • 2000
  • In this paper, we propose a technique for image enhancement, especially for denoising and deblocking based on wavelets. In this proposed algorithm, frame wavelet system designed as a optimal edge detector was used. And our theory depends on Lipschitz regularity, spatial correlation, and some important assumptions. The performance of the proposed algorithm was compared with three popular test images in image processing area. Experimental results show that the performance of the proposed algorithm was better than other previous denoising techniques like spatial averaging filter, Gaussian filter, median filter, Wiener filter, and some other wavelet based filters in the aspect of both PSNR and human visual system, The experimental results also show approximately the same capability of deblocking as the previous developed techniques

  • PDF

New development of artificial record generation by wavelet theory

  • Amiri, G. Ghodrati;Ashtari, P.;Rahami, H.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.2
    • /
    • pp.185-195
    • /
    • 2006
  • Nowadays it is very necessary to generate artificial accelerograms because of lack of adequate earthquake records and vast usage of time-history dynamic analysis to calculate responses of structures. According to the lack of natural records, the best choice is to use proper artificial earthquake records for the specified design zone. These records should be generated in a way that would contain seismic properties of a vast area and therefore could be applied as design records. The main objective of this paper is to present a new method based on wavelet theory to generate more artificial earthquake records, which are compatible with target spectrum. Wavelets are able to decompose time series to several levels that each level covers a specific range of frequencies. If an accelerogram is transformed by Fourier transform to frequency domain, then wavelets are considered as a transform in time-scale domain which frequency has been changed to scale in the recent domain. Since wavelet theory separates each signal, it is able to generate so many artificial records having the same target spectrum.