• Title/Summary/Keyword: WATERSHED

Search Result 3,666, Processing Time 0.027 seconds

Improved Tooth Detection Method for using Morphological Characteristic (형태학적 특징을 이용한 향상된 치아 검출 방법)

  • Na, Sung Dae;Lee, Gihyoun;Lee, Jyung Hyun;Kim, Myoung Nam
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.10
    • /
    • pp.1171-1181
    • /
    • 2014
  • In this paper, we propose improved methods which are image conversion and extraction method of watershed seed using morphological characteristic of teeth on complement image. Conventional tooth segmentation methods are occurred low detection ratio at molar region and over, overlap segmentation owing to specular reflection and morphological feature of molars. Therefore, in order to solve the problems of the conventional methods, we propose the image conversion method and improved extraction method of watershed seed. First, the image conversion method is performed using RGB, HSI space of tooth image for to extract boundary and seed of watershed efficiently. Second, watershed seed is reconstructed using morphological characteristic of teeth. Last, individual tooth segmentation is performed using proposed seed of watershed by watershed algorithm. Therefore, as a result of comparison with marker controlled watershed algorithm and the proposed method, we confirmed higher detection ratio and accuracy than marker controlled watershed algorithm.

Analysis of Impact of Climate Change on River Flows in an Agricultural Watershed Using a Semi-distributed Watershed Model STREAM (준분포형 유역모델 STREAM을 이용한 기후변화가 농업유역의 하천유량에 미치는 영향 분석)

  • Jeong, Euisang;Cho, Hong-Lae
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.2
    • /
    • pp.131-144
    • /
    • 2019
  • Climate Change affects the hydrological cycle in agricultural watersheds through rising air temperature and changing rainfall patterns. Agricultural watersheds in Korea are characterized by extensive paddy fields and intensive water use, a resource that is under stress from the changing climate. This study analyzed the effects of climate change on river flows for Geum Cheon and Eun-San Choen watershed using STREAM, a semi-distributed watershed model. In order to evaluate the performance and improve the reliability of the model, calibration and validation of the model was done for one flow observation point and three reservoir water storage ratio points. Climate change scenarios were based on RCP data provided by the Korea Meteorological Administration (KMA) and bias corrections were done using the Quantile Mapping method to minimize the uncertainties in the results produced by the climate model to the local scale. Because of water mass-balance, evapotranspiration tended to increase steadily with an increase in air temperature, while the increase in RCP 8.5 scenario resulted in higher RCP 4.5 scenario. The increase in evapotranspiration led to a decrease in the river flow, particularly the decrease in the surface runoff. In the paddy agricultural watershed, irrigation water demand is expected to increase despite an increase in rainfall owing to the high evapotranspiration rates occasioned by climate change.

Application of Fluorescence Excitation Emission Matrices for Diagnosis and Source Identification of Watershed Pollution : A Review (유기물 형광분석법을 활용한 유역 오염 진단 및 오염원 추적: 문헌 연구)

  • Kandaddara Badalge Nipuni Dineesha;Jin Hur;Byung Joon Lee
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.1
    • /
    • pp.87-101
    • /
    • 2023
  • The constituents of a watershed control a wide range of ecosystem processes, such as, carbon sequestration, nutrient retention, and biodiversity preservation. Maintenance of a healthy watershed is advantageous to humans in many direct and indirect ways. Dissolved organic matter fluorescence analysis is one of the most commonly utilized parameters for water quality measurement, pollution source tracking, and determination of the ecological state of a watershed. Throughout the recent decades, the advancement in data processing, instrumentation, and methods has resulted in many improvements in the area of watershed study with fluorescence analysis. The current trend of coupling advanced instrumentations and new comparative parameters, such as, microplastics of different types, antibiotics, and specific bacterial contaminants have been reported in watershed studies. However, conventional methodologies for obtaining fluorescence excitation emission matrices and for calculating the fluorescence and spectral indices are preferred to advanced methods, due to their easiness and simple data collection. This review aims to gain a general understanding of the use of dissolved organic matter fluorescence analysis for diagnosis and source identification of watershed pollutions, by focusing on how the studies have utilized fluorescence analysis to improve existing knowledge and techniques in recent years.

Study on Representation of Pollutants Delivery Process using Watershed Model (수질오염총량관리를 위한 유역모형의 유달 과정 재현방안 연구)

  • Hwang, Ha Sun;Rhee, Han Pil;Lee, Sung Jun;Ahn, Ki Hong;Park, Ji Hyung;Kim, Yong Seok
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.6
    • /
    • pp.589-599
    • /
    • 2016
  • Implemented since 2004, TPLC (Total Pollution Load Control) is the most powerful water-quality protection program. Recently, uncertainty of prediction using steady state model increased due to changing water environments, and necessity of a dynamic state model, especially the watershed model, gained importance. For application of watershed model on TPLC, it needs to be feasible to adjust the relationship (mass-balance) between discharged loads estimated by technical guidance, and arrived loads based on observed data at the watershed outlet. However, at HSPF, simulation is performed as a semi-distributed model (lumped model) in a sub-basin. Therefore, if the estimated discharged loads from individual pollution source is directly entered as the point source data into the RCHRES module (without delivery ratio), the pollutant load is not reduced properly until it reaches the outlet of the sub-basin. The hypothetic RCHRES generated using the HSPF BMP Reach Toolkit was applied to solve this problem (although this is not the original application of Reach Toolkit). It was observed that the impact of discharged load according to spatial distribution of pollution sources in a sub-basin, could be expressed by multi-segmentation of the hypothetical RCHRES. Thus, the discharged pollutant load could be adjusted easily by modification of the infiltration rate or characteristics of flow control devices.

Application Analysis of HSPF Model Considering Watershed Scale in Hwang River Basin (황강유역에서의 유역규모를 고려한 HSPF 모형의 적용성 평가)

  • Choi, Hyun Gu;Han, Kun Yeun;Hwangbo, Hyun;Cho, Wan Hee
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.4
    • /
    • pp.509-521
    • /
    • 2011
  • The purpose of this study is to estimate overall reliability and applicability of the watershed modeling for systematic management of point and non-point sources via water quality analysis and prediction of runoff discharge within watershed. Recently, runoff characteristics and pollutant characteristics have been changing in watershed by anomaly climate and urbanization. In this study, the effects of watershed scale were analyzed in runoff and water quality modeling using HSPF. In case of correlation coefficient, its range was from 0.936 to 0.984 in case A(divided - 2 small watersheds). On the other hand, its range was form 0.840 to 0.899 in case B(united - 1 watershed). In case of Nash-Sutcliffe coefficient, its range was from 0.718 to 0.966 in case A. On the other hand, its range was from 0.441 to 0.683 in case B. As a result, it was judged that case A was more accurate than case B. Therefore, runoff and water quality modeling in minimum watershed scale that was provided data for calibration and verification was judged to be favorable in accuracy. If optimal watershed dividing and parameter optimization using PEST in HSPF with more reliable measured data are carried out, more accurate runoff and water quality modeling will be performed.

Stable Carbon Isotope Signature of Dissolved Inorganic Carbon (DIC) in Two Streams with Contrasting Watershed Environments: A Potential Indicator for Assessing Stream Ecosystem Health

  • Kim, Chulgoo;Choi, Jong-Yun;Choi, Byungwoong;Lee, JunSeok;Jeon, Yonglak;Yi, Taewoo
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.2 no.4
    • /
    • pp.259-273
    • /
    • 2021
  • We conducted a study to investigate the characteristics of the carbon cycle of two streams (located in Shig a Prefecture, Japan), having similar size, namely, the Adokawa stream (length: 52 km, area: 305 km2, watershed population: 8,000) and the Yasukawa stream (length: 62 km, area: 380 km2, watershed population: 120,000), but with different degree of human activity. Samples were collected from these two streams at 14 (Adokawa stream) and 23 (Yasukawa stream) stations in the flowing direction. The dissolved inorganic carbon (DIC) concentration and the stable carbon isotope ratio of DIC (δ13C-DIC) were measured in addition to the watershed features and the chemical variables of the stream water. The δ13C-DIC (-9.50 ± 2.54‰), DIC concentration (249 ± 76 µM), and electric conductivity (52 ± 13 µS/cm) in Adokawa stream showed small variations from upstream to downstream. However, the δ13C-DIC (-8.68 ± 2.3‰) upstream of Yasukawa stream was similar to that of Adokawa stream and decreased downstream (-12.13 ± 0.43‰). DIC concentration (upstream: 272 ± 89 µM, downstream: 690 ± 37 µM) and electric conductivity (upstream: 69 ± 17 µS/cm, downstream: 193 ± 37 µS/cm) were higher downstream than upstream of Yasukawa stream. The DIC concentration of Yasukawa stream was significantly correlated with watershed environmental variables, such as, watershed population density (r = 0.8581, p<0.0001, n = 23), and forest area percentage of the watershed (r = -0.9188, p<0.0001, n = 23). δ13C-DIC showed significant negative correlation with the DIC concentration (r = -0.7734, p<0.0001, n = 23), electric conductivity (r = -0.5396, p = 0.0079, n = 23), and watershed population density (r = -0.6836, p = 0.0003, n = 23). Our approach using a stable carbon isotope ratio suggests that DIC concentration and δ13C-DIC could be used as indicators for monitoring the health of stream ecosystems with different watershed characteristics.

Evaluation of Effects on SWAT Simulated Hydrology and Sediment Behaviors of SWAT Watershed Delineation using SWAT ArcView GIS Extension Patch (SWAT ArcView GIS Extension Patch를 이용한 소유역 분할에 따른 수문 및 유사 거동에 미치는 영향 평가)

  • Heo, Sunggu;Kim, Namwon;Park, Younshik;Kim, Jonggun;Kim, Seong-joon;Ahn, Jaehun;Kim, Ki-sung;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.2
    • /
    • pp.147-155
    • /
    • 2008
  • Because of increased nonpoint source runoff potential at highland agricultural fields of Kangwon province, effective agricultural management practices are required to reduce the inflow of sediment and other nonpoint source pollutants into the water bodies. The watershed-scale model, Soil and Water Assessment Tool (SWAT), model has been used worldwide for developing effective watershed management. However, the SWAT model simulated sediment values are significantly affected by the number of subwatershed delineated. This result indicates that the SWAT estimated watershed characteristics from the watershed delineation process affects the soil erosion and sediment behaviors. However, most SWAT users do not spend time and efforts to analyze variations in sediment estimation due to watershed delineation with various threshold value although topography falsification affecting soil erosion process can be caused with watershed delineation processes. The SWAT model estimates the field slope length of Hydrologic Response Unit (HRU) based on average slope of subwatershed within the watershed. Thus the SWAT ArcView GIS Patch, developed by using the regression relationship between average watershed slope and field slope length, was utilized in this study to compare the simulated sediment from various watershed delineation scenarios. Four watershed delineation scenarios were made with various threshold values (700 ha, 300 ha, 100 ha, and 75 ha) and the SWAT estimated flow and sediment values were compared with and without applying the SWAT ArcView GIS Patch. With the SWAT ArcView GIS Patch applied, the simulated flow values are almost same irrespective of the number of subwatershed delineated while the simulated flow values changes to some extent without the SWAT ArcView GIS Patch applied. However when the SWAT ArcView GIS Patch applied, the simulated sediment values vary 9.7% to 29.8% with four watershed delineation scenarios, while the simulated sediment values vary 0.5% to 126.6% without SWAT ArcView GIS applied. As shown, the SWAT estimated flow and sediment values are not affected by the number of watershed delineation significant compared with the estimated flow and sediment value without applying the SWAT ArcView GIS Patch.

A Study on the Runoff Characteristics m Kangwon Watershed (So-yang River Watershed) (강원도 유역의 유출 특성에 관한 연구 (소양강댐 유역 중심으로))

  • Choi, Han-Kyu;Beak, Hyo-Sun;Lee, Min-Seop
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.223-232
    • /
    • 2001
  • This study is finding the most appropriate model of kangwondo watershed. To synthesize each hydrograph, It is found to several parameters which are used in existing hydrographes. then the synthestic hydrograph is compared and investigated with many hydrographes of the rivers in kanwondo. These methods, Nakayasu, Clark, SCS are used to calculate the run-off of this watershed. When the calculated run-off is compared with real rating-curves, then it is found that the SCS method using the Clark's concentrantion time is the best way on this area having large watershed, long river length and gentle water slope, the Nakayasu method is more suitable on this area having small watershed, short river length and steep water slope. Also it is founded from analyzing run-off hydrographes, peak run-off and peak time that the Clark's method applied Kirpich's concentration time way is suitable in the area of kangwondo.

  • PDF

A Comparative Study of Storm Runoff Characteristics far Irrigated Paddy Fields and forest Watershed (관개논과 산림유역의 홍수유출 특성 비교)

  • 임상준;박승우;강문성
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.3
    • /
    • pp.65-72
    • /
    • 2002
  • Rainfall and runoff data from a forested watershed and irrigated rice paddies at the Bal-an experimental watershed were monitored and analyzed to investigate the variations of runoff characteristics with different land use. The comparisons were conducted fourteen storm events ranging 21.8∼190.2 mm of rainfall. Field data showed that direct runoff from paddies and forested watershed are not significantly different in volume. The peak discharge from forest watershed was less than that from paddies far lighter storms, but became greater fur heavier storms. The peak runoff from the forest watershed was 39 percent greater than from the paddies. The results demonstrate that paddies play an important role to reduce peak discharge from heavy storms as compared to forest.

Development of Web-GIS based SWAT Data Generation System (Web-GIS 기반 SWAT 자료 공급 시스템 구축)

  • Nam, Won-Ho;Choi, Jin-Yong;Hong, Eun-Mi;Kim, Hak-Kwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.6
    • /
    • pp.1-9
    • /
    • 2009
  • Watershed topographical data is essential for the management for water resources and watershed management in terms of hydrology analysis. Collecting watershed topographical and meteorological data is the first step for simulating hydrological models and calculating hydrological components. This study describes a specialized Web-based Geographic Information Systems, Soil Water Assessment Tool model data generation system, which was developed to support SWAT model operation using Web-GIS capability for map browsing, online watershed delineation and topographical and meteorological data extraction. This system tested its operability extracting watershed topographical and meteorological data in real time and the extracted spatial and weather data were seamlessly imported to ArcSWAT system demonstrating its usability. The Web-GIS would be useful to users who are willing to operate SWAT models for the various watershed management purposes in terms of spatial and weather preparing.