• Title/Summary/Keyword: WATER STRESS

Search Result 3,230, Processing Time 0.031 seconds

Effect of Sedimentation Depth and Water Depth on the Integrity of River Crossing Pipeline (퇴적깊이와 수심이 하천통과 배관의 건전성에 미치는 영향)

  • Baek, Jong-Hyun;Kim, Young-Pyo;Kim, Woo-Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.6
    • /
    • pp.1-6
    • /
    • 2010
  • River crossing pipelines have been being operated with buried depth of 1.2~4m underneath river bottom to prevent buoyance and external impact. River crossing pipelines have to show resistance to soil load and hydrostatic pressure. In this study, structural integrity of the river crossing pipeline subjected to soil load and hydrostatic pressure was evaluated by using FE analyses. Hoop stress increased with increasing buried depth under identical water height in case of without concrete encasement, however, hoop stress decreased with increasing water height under identical buried depth.

Seismic response and failure modes for a water storage structure - A case study

  • Bhargava, Kapilesh;Ghosh, A.K.;Ramanujam, S.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.1
    • /
    • pp.1-20
    • /
    • 2005
  • The present paper deals with the seismic response analysis and the evaluation of most likely failure modes for a water storage structure. For the stress analysis, a 3-D mathematical model has been adopted to represent the structure appropriately. The structure has been analyzed for both static and seismic loads. Seismic analysis has been carried out considering the hydrodynamic effects of the contained water. Based on the stress analyses results, the most likely failure modes viz. tensile cracking and compressive crushing of concrete for the various structural elements; caused by the seismic event have been investigated. Further an attempt has also been made to quantify the initial leakage rate and average emptying time for the structure during seismic event after evaluating the various crack parameters viz. crack-width and crack-spacing at the locations of interest. The results are presented with reference to peak ground acceleration (PGA) of the seismic event. It has been observed that, an increase in PGA would result in significant increase in stresses and crack width in the various structural members. Significant increase in initial leakage rate and decrease in average emptying time for the structure has also been observed with the increase in PGA.

The effect of blast-induced vibration on the stability of underground water-sealed gas storage caverns

  • Zhou, Yuchun;Wu, Li;Li, Jialong;Yuan, Qing
    • Geosystem Engineering
    • /
    • v.21 no.6
    • /
    • pp.326-334
    • /
    • 2018
  • Underground water-sealed gas storage caverns have become the primary method for strategic storage of LPG. Previous studies of excavation blasting effects on large-scale underground water-sealed gas storage caverns are rare at home and abroad. In this paper, the blasting excavation for underground water-sealed propane storage caverns in Yantai was introduced and field tests of blasting vibration were carried out. Field test data showed that the horizontal radial velocity had a major controlling effect in the blasting vibration and frequencies would not cause the vibration velocity concentration effects. In terms of the influence of blasting vibration on adjacent caverns, the dynamic finite element model in LS-DYNA soft was established, whose reliability was verified by field test data. The numerical results indicated the near-blasting side was primary zone for the structural failure and tensile failure tended to occur in the middle of the curved wall on the near-blasting side. Meanwhile, the safety criterions for adjacent caverns based on stress wave theory and according to statistic relationship between peak effective tensile stress and peak particle velocities were obtained, respectively. Finally, with Safety Regulations for Blasting in China (GB6722-2014) taken into account, a final safety criterion was proposed.

The Shear Characteristics of Unsaturated Sandy Soils (불포화 사질토의 전단특성)

  • Lim, Seong-Yoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.10
    • /
    • pp.57-64
    • /
    • 2007
  • Since matric suction of unsaturated soil was related to soil and ground water contaminations, it is very important to analyze its mechanism that was represented by shear characteristics. In three phases of soil, a little air makes the condition of unsaturated soil on contract or shrinkage surface between water and air. Capillarity and suction in pore of unsaturated soil cause surface tension and surface force so it makes negative pore water pressure and increases effective stress as a result. Therefore, negative pore water pressure in partially saturated soil affects the soil structure and degree of saturation and it is important to evaluate accurately unsaturate flow and behavior. In this study, the shear strength characteristics of the seven sandy soils were investigated using consolidated drained triaxial tests with special emphasis on the effects of the negative pore pressure and the matric suction. These tests involved shearing under either a constant net confining pressure and varying matric suction or under a constant matric suction and varying net normal stress.

Numerical simulation on the coupled chemo-mechanical damage of underground concrete pipe

  • Xiang-nan Li;Xiao-bao Zuo;Yu-xiao Zou;Yu-juan Tang
    • Structural Engineering and Mechanics
    • /
    • v.86 no.6
    • /
    • pp.779-791
    • /
    • 2023
  • Long-termly used in water supply, an underground concrete pipe is easily subjected to the coupled action of pressure loading and flowing water, which can cause the chemo-mechanical damage of the pipe, resulting in its premature failure and lifetime reduction. Based on the leaching characteristics and damage mechanism of concrete pipe, this paper proposes a coupled chemo-mechanical damage and failure model of underground concrete pipe for water supply, including a calcium leaching model, mechanical damage equation and a failure criterion. By using the model, a numerical simulation is performed to analyze the failure process of underground concrete pipe, such as the time-varying calcium concentration in concrete, the thickness variation of pipe wall, the evolution of chemo-mechanical damage, the distribution of concrete stress on the pipe and the lifetime of the pipe. Results show that, the failure of the pipe is a coupled chemo-mechanical damage process companied with calcium leaching. During its damage and failure, the concentrations of calcium phase in concrete decrease obviously with the time, and it can cause an increase in the chemo-mechanical damage of the pipe, while the leaching and abrasion induced by flowing water can lead to the boundary movement and wall thickness reduction of the pipe, and it results in the stress redistribution on the pipe section, a premature failure and lifetime reduction of the pipe.

The Effects of Whangryonhaedoktang on Morris Water Maze and Tyrosine Hydroxylase Expression in Ventral Tegmental Area and Locus Coeruleus of the Chronic Mild Stress Animal Model of Depression (황련해독탕(黃連解毒湯)이 우울증(憂鬱症) 모형동물(模型動物)의 수중미로학습(水中迷路學習)과 뇌(腦)의 Tyrosine Hydroxylase 발현(發顯) 수준(水準)에 미치는 효과(效果))

  • Hong, Sung-Won;Kim, Jong-U;Kim, Eun-Ju;Kim, Hyeon-Ju;Kim, Hyeon-Taek;Whang, Wei-Wan
    • Journal of Oriental Neuropsychiatry
    • /
    • v.14 no.1
    • /
    • pp.27-44
    • /
    • 2003
  • Objective : The aim of this study was to assess protective effects of Whangryonhaedoktang on the chronic mild stress (CMS) animal model of depression. Method : Male Sprague-Dawley rats were used for this study. The subjects were divided into 3 groups (CMS-drug group: Whangryonhaedoktang was administered during CMS procedure, CMS-vehicle: water was administered during CMS procedure, normal control group: without CMS procedure). After 4 weeks of CMS procedure, Morris water maze (MWM) test and open field test were executed and tyrosine hydroxylase (TH) was measured in ventral tegmental area (VTA) and locus coeruleus (LC) of rat brain. Result : 1. CMS procedure induced defects of spatial learning in early period of MWM test. 2. CMS Whangryonhaedoktang group showed shorter escape latency in comparison with CMS control group in MWM test on the first day of the test. 3. CMS Whangryonhaedoktang group and CMS control group showed no significant difference of activities and emotional behaviors in comparison with normal control group in open field test. 4. CMS Whangryonhaedoktang group showed significant inhibition effects of TH expression in VTA and LC areas in comparison with CMS control group. Conclusion : These results suggest that Whangryonhaedoktang may have inhibition effects to early period defects of spatial learning and protective antidepressant effects in CMS model rats.

  • PDF

Re-estimation of Radiation Stress (라디에이션 응력의 재평가)

  • 김경호;조재희;유동훈
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.4
    • /
    • pp.305-312
    • /
    • 1995
  • In general, the radiation stresses based on the linear wave theory are overestimated which result in the discrepancy between the computed results and laboratory data of mean water level in the surf zone. Oh (1995) estimated the mean water level by using Svendsen's radiation stress model (1984) and compared with the experimental data. In this study. the computed results showed good agreements with the experimental data in the case of small wave steepness. while the results were overestimated in the case of large wave steepness. In this paper. the dimensionless radiation stress proposed by Svendsen (1984) is expressed in terms of relative water depth at breaking point and deep water wave steepness. The computed results are compared with the results calculated by d linear wave theory, Stive's model (1984). Sawaragi et al's model (1984) based on the spectrum of breaking wave components. and published laboratory data. The computed results of the modified Svendsen's model arc favourably compared with the laboratory data.

  • PDF

The effects of supplementary diets on the water temperture stress in olive flounder, Paralichthys olivaceus (넙치, Paralichthys olivaceus의 수온 자극 스트레스에 대한 사료첨가제 투여 효과)

  • Gwon, Mun-Gyeong;Park, Sang-Eon;Bang, Jong-Deuk;Jo, Byeong-Yeol;Lee, Sang-Min;Park, Su-Il
    • Journal of fish pathology
    • /
    • v.16 no.3
    • /
    • pp.183-191
    • /
    • 2003
  • The effect of each dietary supplements (Undaria 5%, Undaria 10%, Obosan 0.5%, Wasabi leaf 2%, Wasabi stem 2%) on the water temperature fluctuation in juvenile olive flounder (Paralichthys olivaceus) was investigated. The response to stress was assessed in terms of effects on haematological and immunological, and resistance against Edwardsiella tarda infection. Plasma glucose and cortisol levels were significantly lower in 5% undaria and 2% wasabi leaf supplement groups than the controls after the first change of water temperature (P<0.05). The plasma lysozyme activities and the survival rates from E. tarda infection were significantly higher in the 5% undaria supplement groups than the control (P<0.05). These results suggest that the 5% undaria supplement seems to be contributable to the increased disease resistance on olive flounder.

Effect of different water levels on the photosynthetic pigments of crops

  • Ryu, Hee-La;Jeong, Eun-Ju;Lee, Won-Hee;Lee, In-Jung
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.205-205
    • /
    • 2017
  • An excess soil water condition is one of the major problems for the field crops growing in paddy fields because of their poor drainage and less availability for oxygen uptake which leads to adversely affect the photosynthesis. Therefore, the current study was undertaken with aim to investigate the effects groundwater level on the photosynthetic response of soy bean (Urum), red bean (Arari), sesame (Geonbaek), perilla (Dayu) after the transplanting to the lysimeter to investigate the plant-water relation and their effect on photosynthesis. The chlorophyll content of the crops according to the humid conditions of the soy bean, sesame and the perilla was found to be 5%, 6.89 % and 13.7% higher than that of the groundwater treated at 40cm, respectively. On the other hand, the chlorophyll content of adzuki bean decreased 6.6% from the groundwater level of 40cm, and the sorghum decreased by 5.7%. As a result of investigating the Fv / Fm value of groundwater, the adzuki bean at 20cm above groundwater was lower than that of groundwater by 40cm immediately before flowering. The Fv / Fm value of soy bean and sesame at 40cm above groundwater were lowered by flowering under groundwater 20 cm and Fv / Fm value of sorghum is increased at 40 cm treatment immediately before flowering while the Fv / Fm values of the perilla had no significant difference in comparison to those at 20 cm and 40 cm of groundwater. In the case of chlorophyll fluorescence reaction, it is known that the when the absolute value is closer to 0.82, the stress is considered less. As a result of comparing the numerical values of the crops, it was found that the sorghum was the most stressed followed by adzuki bean and sesame, while the soy beans and perilla was found on the average, as they received less stress.

  • PDF

Effects of Geosynthetic Reinforcement on Compaction of High Water Content Clay (토목섬유 보강이 고함수비 점성토의 다짐에 미치는 영향)

  • Roh Han Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.2
    • /
    • pp.67-84
    • /
    • 2005
  • This research was conducted to evaluate the effectiveness of reinforcement for nearly saturated soft clay compaction. The effectiveness was investigated by roller compaction test using nearly saturated clay specimens. The nearly saturated condition was obtained by submerging clay in the water for 12 hours. High water content specimens were compacted in plane strain condition by a steel roller. A specimen was compacted by four 5 cm horizontal layers. Specimens were prepared fur both reinforced and unreinforced cases to evaluate the effectiveness of reinforcement. Used reinforcement is a composite consisted of both woven and non-woven geotextile. The composite usually provides drainage and tensile reinforcement to hi인 water-contented clay so that it increases bearing capacity. Therefore, large compaction load can be applied to reinforced clay and it achieves higher density effectively. The reinforcement also increases compaction efficiency because it reduces the ratio between shear and vertical forces during compaction process. The maximum vertical stress on the base of specimen usually decreased with higher compaction thickness. The reinforcement increases soil stiffness under the compaction roller and it initiates stress concentration. As a result, it maintains higher vertical stress level on the base of specimen that provides better compaction characteristics. Based on test results, it can be concluded that the reinforcement is essential to achieve effective compaction on soft clay.