• Title/Summary/Keyword: WATER STRESS

Search Result 3,230, Processing Time 0.032 seconds

Relationship between Saliva Factors Measured Using the SILL-Ha Saliva Test System and Blood Cell Counts according to Perceived Stress Scale Scores in Female College Students

  • Lee, Sun-Mi;Jung, Eun-Ha;Jun, Mi-Kyoung
    • Journal of dental hygiene science
    • /
    • v.21 no.3
    • /
    • pp.150-157
    • /
    • 2021
  • Background: Stress as a cause of mental health problems is known to be more prevalent in women than in men and has a negative effect on several aspects of physical health, such as the composition of blood and saliva. This study investigated the relationship of perceived stress with blood cell counts, saliva flow rate, and saliva factors. Methods: We recruited women in their 20s with a high prevalence of stress. Stress was evaluated using the Korean version of the perceived stress scale. Blood tests included white blood cell, hemoglobin, and platelet. We then examined the saliva flow rate and cariogenic bacteria level, acidity, occult blood, buffer capacity, leukocyte level, protein level, and ammonia level using rinse water with the SILL-Ha saliva test system. Results: In a total of 70 participants, the average age was 21.64 years old, the average perceived stress score was 16.96±4.32, and high levels of stress were reported by 80% of the participants (n=56). The high-stress group had lower hemoglobin levels. In addition, the high-stress group showed a lower saliva flow rate than the low-stress group, and there was a difference in the salivary acidity and buffer capacity. The total perceived stress score showed a positive correlation with acidity and negative correlation with buffer capacity and the hemoglobin level. Conclusion: This study found that stress in female college students might affect the composition of blood and saliva. High levels of stress were positively correlated with the hemoglobin level, saliva flow rate, and acidity and negatively correlated with the buffer capacity.

In-situ Rock Stress Measurement at the Water Tunnel Sites in the OO Oil Storage Facility with Hydraulic Fracturing Method (수압파쇄법을 이용한 OO 원유비축시설 내 수벽 터널에서의 초기응력 측정)

  • Bae, Seong-Ho;Kim, Jae-Min;Kim, Jang-Soon;Lee, Young-Ho
    • Tunnel and Underground Space
    • /
    • v.18 no.1
    • /
    • pp.80-89
    • /
    • 2008
  • The influence of in-situ rock stress on the stability of an underground rock structure increases as the construction depth become deeper and the scale of a rock structure become larger. In general, hydraulic fracturing stress measurement has been performed in the surface boreholes of the target area at the design stage of an underground structure. However, for some areas where the high horizontal stresses were observed or where the overstressed conditions caused by topographical and geological factors are expected, it is desirable to conduct additional in-situ stress measurement in the underground construction site to obtain more detailed stress information for ensuring the stability of a rock structure and the propriety of current design. The study area was a construction site for the additional underground oil storage facility located in the south-east part of OO city, Jeollanam-do. Previous detailed site investigation prior to the design of underground structures revealed that the excessive horizontal stress field with the horizontal stress ratio(K) greater than 3.0 was observed in the construction area. In this study, a total of 13 hydraulic fracturing stress measurements was conducted in two boreholes drill from the two water tunnel sites in the study area. The investigation zone was from 180 m to 300 m in depth from the surface and all of the fracture tracing works were carried out by acoustic televiewer scanning. For some testing intervals at more than 200 m ind depth from surface, the high horizontal stress components the horizontal stress ratio(K) greater than 2.50 were observed. And the overall investigation results showed a good agreement with the previously performed test.

Physiological Response of Winter Barley to Salt Stress at Seedling Stage (보리 유묘기의 염처리가 생리적 반응에 미치는 영향)

  • Choi, Won-Yul;Kwon, Yong-Woong;Park, Jong-Hwan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.5
    • /
    • pp.534-538
    • /
    • 1997
  • Some physiological characteristics and cultivar differences of winter barley to salt stress were studied during seedling stage. Salt stress was caused by adding NaCl solution to the pot culture soil. Measurements of the responses to salt stress and of the responses after relief from stress were done in terms of leaf water potential, chlorophyll and free proline contents, seedling height and seedling dry weight, and survival rate of leaves. Under salt stress ($\Psi_{\pi}$ =-20bar) seedling height and seedling weight were decreased by 2~22% and by 25~39% respectively, showing some differences among cultivars. Chlorophyll contents was decreased by 33~49%, and free proline content was remarkably increased from control 0.2~0.3mg to salt stress 9.6~14.7mg. The leaf water potential of seedling grown under salt stress with NaCl solution($\Psi_{\pi}$ =-10 or -20bar) was decreased from control -3.3bar to salt stress -9.0bar or -16.2bar respectively but there were no large differences among cultivars with time after relief from salt stress. Leaf survival rate was high in order of Baegdong, Milyang12, Olbori, Durubori and Hyangmaeg, and decrease rate of seedling dry weight was low in the order of Baegdong, Olbori, Hyangmaeg, Milyang12, Durubori. The increase in free proline contents was high in the order of Milyang12, Hyangmaeg, Baegdong, Durubori and Olbori.

  • PDF