• Title/Summary/Keyword: WATER STRESS

Search Result 3,231, Processing Time 0.037 seconds

Fine Aggregates Size Effect on Rheological Behavior of Mortar (잔골재 입자 크기에 따른 모르타르의 레올로지 거동 특성)

  • Lee, Jin Hyun;Kim, Jae Hong;Kim, Myeong Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5636-5645
    • /
    • 2015
  • Physical characteristics of aggregates affect the workability and strength of mortar and concrete, which include their fineness ratio, particle size distribution and water absorption. The workability of construction materials decreases if the incorporated fine aggregates show improper size distribution of their particles. This study shows the particle size effect on the rheological behavior of mortar and provides basic information for evaluating its workability. A mini-slump flow test was adopted to evaluate the workability of mortar. In addition, its plastic viscosity and yield stress were measured using a rheometer for building materials. The sand samples were prepared by sieving river sand and sorting out with their particle sizes. As a result, it was observed that the fines less than 0.7 mm increases the yield stress and plastic viscosity of the mortar samples. If the fines are less than 0.34 mm, the water absorption of the fines dominates change on the workability.

The Influence of Hydrogen Peroxide Treatment on Water Stress, Photosynthesis and Thermotolerance of Cucumber(Cucumis sativus) in Greenhouse Cultivation during Summer (Hydrogen Peroxide 처리가 여름철 시설오이의 수분 스트레스, 광합성, 내서성에 미치는 영향)

  • Woo Young-Hoe;Kim Hyung-Jun;Kim Tae-Young;Kim Ki-Deog;Huh Yun-Chan;Chun Hee;Cho Ill-Hwan;Nam Yooun-Il;Ko Kwan-Dal;Lee Kwan-Ho;Hong Kue-Hyon
    • Journal of Bio-Environment Control
    • /
    • v.15 no.1
    • /
    • pp.47-52
    • /
    • 2006
  • This studies were carried out in summer season to increase high temperature tolerance using hydrogen peroxide treatments on cucumber in greenhouse. The water stress of cucumber in greenhouse by the hydrogen peroxide treatments showed as control>250 mM>500 mM treatments in order. The photosynthesis rate of cucumber at $30^{\circ}C$ did not show difference with each hydrogen peroxide treatment in temperature controlled greenhouse. However, the photosynthesis rate of cucumber in the control and hydrogen peroxide treatments at $40^{\circ}C$ was significantly different. The photosynthesis rate of cucumber in combined treatment with 1,000 $mg{\cdot}L^{-1}\;CO_2$ supply and hydrogen peroxide was also higher than control, however, there was no different of photosynthesis in 250 mM and 500 mM treatment. The value of $F_v/F_m$ and $F_m/F_o$ of chlorophyll fluorescent in 500 mM hydrogen peroxide treatment at $40^{\circ}C$ was highest. Also the activity of POD, the antioxidant enzyme, was higher with high hydrogen peroxide concentration than the other treatments. The high temperature limits for growth were $43^{\circ}C$ in the control, $44^{\circ}C$ in the 250 mM and $46^{\circ}C$ in the 500 mM according to analyze chlorophyll fluorescent $F_o$. The high temperature tolerance in cucumber increased approximately $3^{\circ}C$ by the hydrogen peroxide treatments under this experiment conditions.

An Estimating Method for Post-cyclic Strength and Stiffness of Eine-grained Soils in Direct Simple Shear Tests (직접단순전단시험을 이용한 동적이력 후 세립토의 강도 및 강성 예측법)

  • Song, Byung-Woong;Yasuhara, KaBuya;Murakami, Satoshi
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.2
    • /
    • pp.15-26
    • /
    • 2004
  • Based on an estimating method for post-cyclic strength and stiffness with cyclic triaxial tests proposed by one of the authors, cyclic Direct Simple Shear (DSS) tests were carried out to confirm whether the method can be adapted to DSS test on fine-grained soils: silty clay, plastic silt, and non-plastic silt. Results from cyclic and post-cyclic DSS tests were interpreted by a modified method as adopted for cyclic and post-cyclic triaxial tests. In particular, influence of plasticity index for fine-grained soils and initial static shear stress (ISSS) was emphasised. Findings obtained from the present study are: (i) liquefaction strength ratio of fine-grained soils decreases with decreasing plasticity index and increasing ISSS; (ii) plasticity index and ISSS did not markedly influence relation between equivalent cyclic stiffness and shear strain relations; (iii) the higher the plasticity index of fine-grained soils is, the less the strength ratio decreases with increment of a normalcies excess pore water pressure (NEPWP); (iv) stiffness ratio of plastic silt has large activity decrease rapidly with increasing excess pore water pressure; and (v) post-cyclic strength and stiffness results from DSS tests agree well with those predicted by the method modified from a procedure used for triaxial test results.

Impact Assessment of Sewage Effluent on Freshwater Crucian Carp Carassius auratus using Biochemical and Histopathological Biomarkers (생화학적 및 조직병리학적 생체지표를 이용한 하수처리장 방류수의 담수 붕어(Carassius auratus) 영향 평가)

  • Samanta, Palas;Im, Hyungjoon;Lee, Hwanggoo;Hwang, Soon-Jin;Kim, Wonky;Ghosh, Apurba Ratan;Jung, Jinho
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.5
    • /
    • pp.419-432
    • /
    • 2016
  • The aim of this study is to assess the influence of effluent discharge from a sewage treatment plant by evaluating oxidative stress and histopathological alterations in freshwater crucian carp Carassius auratus collected from the Eungcheon stream, located in Korea. Catalase activity in the gills, liver, and kidneys of C. auratus was collected from mixing zones; the downstream site was notably higher of fish than that of the upstream site. In addition, the activity of glutathione-S-transferase in the gills and liver was significantly higher in samples from the mixing zone than in those from the upstream site (p < 0.05). In addition, significantly elevated lipid peroxidation levels were observed in fish livers sampled from the mixing zone than in those from the upstream site (p < 0.05). Significant histopathological alternations were also observed in C. auratus, with the order of magnitude changes being liver > kidney > gills. These findings suggest that the liver is most affected by effluent discharge. The degree of tissue changes (DTC) indicate that the highest level occurred in samples from the mixing zone (30.98 ± 5.40) followed by those from the downstream site (19.28 ± 4.31) and was the lowest in samples from the upstream site (4.83 ± 2.67). These findings indicate that fish collected from the mixing zone are most affected by effluent discharge and both oxidative stress and histopathological indices are useful tools for monitoring contaminated rivers and streams.

Characteristics of Silicon Rich Oxide by PECVD (PECVD에 의한 Sirich 산화막의 특성)

  • Gang, Seon-Hwa;Lee, Sang-Gyu;Park, Hong-Rak;Go, Cheol-Gi;Choe, Su-Han
    • Korean Journal of Materials Research
    • /
    • v.3 no.5
    • /
    • pp.459-465
    • /
    • 1993
  • By making the inter-metal PECVD $SiO_2$ as a Si rich oxide under the SOG, the hydrogen and water related diffusants could be captured a t SI dangling bonds. This gettering process was known to prevent the device characteristics degradations related to the H, $H_20$. The basic characteristics of Si rich oxide have been studied according to changing high/low frequency power and $SiH_4/N_2O$ gas flow ratio in PECVD. As increase in low frequency power, deposition rate decreased but K.I. and compressive stress increased. Decrease of the water peaks of FTIR spectra at the wave number range of 3300~3800$\textrm{cm}^{-1}$' also indicated that intensty the films were densified. As increase in SiH, gas flow rate, deposition rate, R.I. and etch rate increased while compressive stress decreased. F'TIK spectra showed that peak intensity corresponding to Si-0-Si stretching vibration decreased and shifted to the lower wave numbers. But AES showed that Si dangl~ng bonds were increased as a result of lower Si:O(l: 1.23) ratlo inthe Si rich oxide as compared to Si : O(1 : 1.98) ratio of usual oxide.

  • PDF

A Survey Low Temperature Damage of Tea Tree at South Korea in 2011 (2011년 남부지방 차나무 저온 피해 조사)

  • Hwang, Jung-Gyu;Kim, Yong-Duck
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.4
    • /
    • pp.246-253
    • /
    • 2012
  • Despite frequent freezing injury to tea trees due low temperature, drought, and strong wind during wintertime, no comprehensive measurements have been taken. We selected and examined 9 locations in Hwagae-myeon and 4 places in Agyang-myeon, Hadong-gun, Gyeonsanggnam-do where low temperature damage had occurred between December 2010 and February 2011. Our objective is to examine the effect of frost damage on the morphological symptom and harvest of a tea tree exposed to a constant low temperature environment during wintertime. The results of our analyses on meteorological environment, tea leaf chromaticity, water content and trypan blue are as follows: (1) the number of days with temperature of $-10^{\circ}C$ or less, which were subject to frost damage to a tea tree were 8 and 13.6% during the winterization period in 2011; (2) the accumulated time was 1,308 minutes, and the longest duration at $-10^{\circ}C$ was 588 minutes from 21:08 p.m. 15 January to 7:30 a.m. $16^{th}$ January. The rainfall was only 104 mm which was 306 mm less than the previous year; (3) the lightness L values in 2011 were higher than in 2012 due to dehydration and necrosis by blue discoloration and red discoloration at all areas in chromaticity measurement; (4) the water content in a tea leaf in 2011 was higher than in 2012 due to low rainfall and strong wind, and almost no cell death phenomenon was observed from normal tea leaves subject to no low temperature stress in a trypan blue analysis; and (5) partial coloration due to cell death, however, took place in the leaves damaged by blue discoloration subject to low temperature stress, and most coloration due to cell death took place in the leaves damaged by red discoloration.

Implementation of Coupled Hydro-Mechanical Problems in Partially Saturated Soils (불포화 지반에 물의 침투와 흙의 변형이 사면의 안정성에 미치는 영향)

  • Kim, Jaehong;Hwang, Youngcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.5
    • /
    • pp.35-43
    • /
    • 2010
  • Partially saturated permeability should be defined by the function of suction (or degree of saturation) and porosity. However, commercial software and most researchers' model often describe as the function of suction. The stability of a soil slope can be affected by both hydraulic and shear strength properties of partially saturated soils. For both studies, we generally use an uncoupled seepage analysis program Seep/W(Geo-Slope, 2007) and a series stress-deformation analysis program Sigma/W, or slope stability analysis program Slope/W. Seep/W is performed for simulations of partially saturated flow problems in non-deformable soil media. However, under real situations, the water flow processes in a deformable soil are influenced by soil skeleton movement and the pore water pressure changed due to seepage will lead to changes in stresses and to deformation of a soil. Many researchers are currently developing their models for solving coupled hydro-mechanical problems to simulate slope stability during a rainstorm. For a proper implementation in the field, the developed model should be still needed in order to achieve appropriate accuracy of the solution for coupled hydro-mechanical problems in soil slope stability. Thus, the paper presents the comparison of slope stability between uncoupled and coupled analyses of seepage and stress deformation problems.

A Laboratory Study on Erosional Properties of Fine Cohesive Sediments from Saemankeum Artificial Lake (새만금 인공호 점착성 퇴적물의 침식특성에 대한 실험적 연구)

  • Hwang, Kyu-Nam;Kim, Hyun-Min;Ahn, Ik-Jang
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.5
    • /
    • pp.473-482
    • /
    • 2008
  • The purpose of this study is to quantitatively estimate the erosional properties for cohesive sediment from Saemankeum artificial lake. A series of erosion tests were conducted with Chonbuk annular flume, which is the first one constructed in this country and verified with validities. Each erosion tests were conducted under a uniform bed condition but a different bed density respectively, and its critical shear stress for erosion(${\tau}_{ce}$) as well as the erosion rate coefficient (${\varepsilon}_M$) were determined quantitatively. Since the erosional properties of the cohesive sediments vary largely depending in the physico-chemical properties, such properties of Saemankeum sediments were also estimated and their effects on the erosional properties were analyzed. For Saemankeum sediments, it can be seen that ${\tau}_{ce}$ increases from $0.26N/m^2$ to $0.52N/m^2$ and ${\varepsilon}_M$ decreases exponentially from $14.28mg/cm^2\;hr$ to $6.02mg/cm^2\;hr$, as the bed density varies from $1.17g/cm^3$ to $1.34g/cm^3$. The erosional parameters of Saemankeum sediments are found to be remarkably different in quantity as compared with those for cohesive sediments from other sites. Particularly, ${\tau}_{ce}$ for Saemankeum sediments is known to be larger than that of Kunsan sediments but similar with that of Shihwa sediments, while ${\varepsilon}_M$ for Saemankeum sediments is shown to be smaller than that for Kunsan sediments.

Unsaturated Shear Strength Characteristics of Nakdong River Silty Sand (낙동강 실트질 모래의 불포화 전단강도 특성)

  • Jin, Guang-Ri;Shin, Ji-Seop;Park, Sung-Sik;Kim, Ki-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.2
    • /
    • pp.47-56
    • /
    • 2013
  • There are many technical problems, which can not be resolved by the concept of saturated soil mechanics. Unsaturated soils show an apparent cohesion due to negative pore pressure and relatively lower permeability due to entrapped air compared to saturated soils. The determination of engineering properties of soils with various moisture content is very important to evaluate shear strength and stability of natural and engineered soils. So various researches should be made on unsaturated soils. Especially, sandy soils are widely distributed near Nakdong river, one of the four rivers where Restoration Projects were carried out. Many structures such as dams, flood control facilities, detention facilities and reservoirs have been built in this area. In this study, unsaturated triaxial compressive tests were conducted on sands or silty sands at Nakdong river in order to provide their fundamental characteristics for design and construction of geotechnical structures. As a result of the tests, the maximum deviator stress increased as the confining stress and matric suction increased. The cohesion increased non-linearly as the matric suction increased, but the angle of internal friction was marginally changed.

Mycorrhizae Effects on N Uptake and Assimilation Estimated by 15N Tracing in White Clover under Water-Stressed Conditions (15N 추적에 의한 화이트 클로버에서 마이코라이자 접종이 수분 스트레스 조건하에서 질소 흡수 및 동화의 평가)

  • Zhang, Qian;Park, Sang-Hyun;Kim, Tae-Hwan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.31 no.3
    • /
    • pp.277-284
    • /
    • 2011
  • To investigate the effects of arbuscular mycorrhizal (AM) symbiosis on N uptake and its assimilation under drought-stressed conditions in white clover, total $^{15}N$ amount and $^{15}N$ amount incorporated into $NO_3^-$, amino acids and soluble proteins were quantified by $^{15}N$ tracing during 7 days of water treatment. Under well-watered conditions, there were no significant effects of AM symbiosis on all parameters analyzed in this study. Drought stress decreased total $^{15}N$ amount both in AM and non-AM plants, with a lower rate in AM plants (-13.8%) relative to non-AM plants (-28.5%) at day 7. Drought significantly increased $^{15}N-NO_3^-$ amount in non-AM plants. The amount of $^{15}N$-amino acids was 1.26-fold and 1.33-fold higher, respectively, in leaves and roots of AM plants compared to those of non-AM ones. Drought decreased the amount of $^{15}N$-soluble proteins in leaves at day 7, with a higher rate in non-AM plants than in AM ones. These results clearly indicate that AM colonization effectively alleviating the decrease in N uptake, amino acids and proteins synthesis caused by drought stress.