• Title/Summary/Keyword: WATER STRESS

Search Result 3,196, Processing Time 0.036 seconds

Physiological Responses of Calystegia soldanella under Drought Stress

  • Bae, Chae-Youn;Hwang, Jeong-Sook;Bae, Jeong-Jin;Choi, Sung-Chul;Lim, Sung-Hwan;Choi, Deok-Gyun;Kim, Jong-Guk;Choo, Yeon-Sik
    • Journal of Ecology and Environment
    • /
    • v.36 no.4
    • /
    • pp.255-265
    • /
    • 2013
  • This study was conducted to determine the extent of drought resistance based on physiological responses of Calystegia soldanella under water deficit. In order to investigate the changes of plant growth, stomatal density, photosynthesis, chlorophyll fluorescence, the contents of chlorophyll and carotenoid, osmolality, total ion contents, the contents of carbohydrate and proline, C. soldanella was grown under well watered and drought stressed conditions for 12 days. In this study, water-deficit resulted in remarkable growth inhibition of C. soldanella. The effect of water-deficit on plant growth was associated with low osmotic potential of soil. On day 12 after drought treatment, dry weight, relative water contents, number and area of leaves and stem length were lower than those of control. The stomatal conductance and net photosynthetic rate were significantly reduced in water stressed plant to regulate inner water contents and $CO_2$ exchange through the stomatal pore. Chlorophyll fluorescence and chlorophyll contents were not different in comparison with the control, indicating that the efficiency of photosystem II was not affected by drought stress. This results could be explained that water-deficit in C. soldanella limits the photosynthetic rate and reduces the plant's ability to convert energy to biomass. A significant increase in total ion contents and osmolality was observed on day 7 and day 12. Accumulation of proline in leaves is associated with the osmotic adjustment in C. soldanella to soil water-deficit. Consequently, this increase in osmolality in water stressed plant can be a result in the increase of ion contents and proline.

Diurnal changes of leaf water potential in relation to differences of cutting arrangement (삽수조제(揷穗調製)의 다름에 따른 일중(日中)의 Leaf Water potential의 변화(變化))

  • Hong, Sung Cheon;Kim, Young Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.54 no.1
    • /
    • pp.76-79
    • /
    • 1981
  • This thesis emphasize on diurnal changes of leaf water potential in relation to differences of cutting arrangement. 1. The more is leaves attached to the cutting, the higher is water stress in the cutting compared with less leaves. 2. The less is diameter of cut-part, the more are shown changes in increased and decrease in diurnal leaf water potential. 3. The more is length of stem, the more are shown water stress in diurnal leaf water potential 4. There is no differences between earthen-ball cutting and non-earthen ball cutting in diurnal leaf water potential. 5. Cuttings with two year's slip, compared with one year's leaf water potential increases slowly, dry weigh of root and numbers of rooted cutting are most likely dependent upon other factors rather than the water stress.

  • PDF

Can Exogenous Betaine Be an Effective Osmolyte in Broiler Chicks under Water Salinity Stress?

  • Honarbakhsh, Shirin;Zaghari, Mojtaba;Shivazad, Mahmood
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.11
    • /
    • pp.1729-1737
    • /
    • 2007
  • A CRD experiment was conducted to evaluate the effects of different exogenous betaine levels (0.000, 0.075, 0.150 and 0.225 percent) on 576 one-day-old male broiler chicks (Ross) under water salinity stress. Different levels of water salinity were made by adding 3 levels of NaCl (0, 1,000 and 2,000 mg/L) to drinking water. Feed and water were available ad libitum. Betaine increased body weight, improved feed conversion ratio, and decreased packed cell volume (p<0.05). Water salinity promoted body weight over the whole period, increased feed intake (11 to 21 and 29 to 42-d) and also improved feed conversion ratio in grower and finisher periods (p<0.01). Breast weight, water consumption (28-d and 42-d) and excreta moisture (28-d) were increased by elevating the level of water salinity (p<0.01). Interaction between dietary betaine and water salinity was significant on plasma osmolarity as well as epithelial osmolarity of the duodenum at 28-d. Epithelial osmolarity was decreased from duodenum to ileum. The data imply that betaine is involved in the protection of intestinal epithelia against osmotic disturbance which can be caused by saline water, but further research is needed to investigate the effects of betaine with higher levels of water salinity.

Accelerated Degradation Stress of High Power Phosphor Converted LED Package (형광체 변환 고출력 백색 LED 패키지의 가속 열화 스트레스)

  • Chan, Sung-Il;Jang, Joong-Soon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.4
    • /
    • pp.19-26
    • /
    • 2010
  • We found that saturated water vapor pressure is the most dominant stress factor for the degradation phenomenon in the package for high-power phosphor-converted white light emitting diode (high power LED). Also, we proved that saturated water vapor pressure is effective acceleration stress of LED package degradation from an acceleration life test. Test conditions were $121^{\circ}C$, 100% R.H., and max. 168 h storage with and without 350 mA. The accelerating tests in both conditions cause optical power loss, reduction of spectrum intensity, device leakage current, and thermal resistance in the package. Also, dark brown color and pore induced by hygro-mechanical stress partially contribute to the degradation of LED package. From these results, we have known that the saturated water vapor pressure stress is adequate as the acceleration stress for shortening life test time of LED packages.

Assessment on Consolidation Material Function and Initial Stress for Soft Ground by Hydraulic Fill the at Southern Coast of Korea (남해안 준설매립 연약지반에 대한 압밀 물질함수 및 초기응력 산정)

  • Jeon, Je Sung;Koo, Ja Kap
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.136-145
    • /
    • 2011
  • For a massive project related to building national industrial complexes on a soft ground applied to PVD after dredging and hydraulic fill, laboratory tests were carried out using undisturbed sample taken from various depth. Piezocone penetration and dissipation tests were carried out to assess horizontal coefficient of consolidation and initial stress in field. The ground consists of upper dredged fill and lower original clay layer having both similar marine clays. It should be, however, considered as multi-layered soft ground having different initial void ratio, initial water content, initial effective stress, and permeability and compressibility with directions. To assess initial stress of those soft layers in which have different stress history related to consolidation, CPTu test results, especially excess pore water pressure, were analyzed. It allows to find out distribution of excess pore water pressure and initial stress inner original clay layer.

Evaluation of the Performance of Water Quality Models for the Simulation of Reservoir Flushing Effect on Downstream Water Quality (저수지 플러싱 방류가 하류 수질에 미치는 영향 모의를 위한 수질모델의 성능 평가)

  • Jung, Yong Rak;Chung, Se Woong;Yoon, Sung Wan;Oh, Dong Geun;Jeong, Hee Young
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.1
    • /
    • pp.48-57
    • /
    • 2009
  • A two-dimensional (2D), laterally-averaged hydrodynamic and water quality model, CE-QUAL-W2 was applied to evaluate the performance on simulating the effect of flushing from Daecheong Reservoir on the downstream water quality variations during the flushing events held on November, 2003 and March, 2008. The hydraulic and water quality simulation results were compared with field measurement data, as well as a one-dimensional (1D), unsteady model (KORIV1) that revealed limited capability in the previous study due to missing the resuspension process of river bottom sediments. The results showed that although the 2D model made satisfactory performance in reproducing the temporal variations of dissolved matters including phosphate, ammonia and nitrate, it revealed poor performance in simulating the increase of biological oxygen demand and suspended sediment (SS) concentrations during the passage of the flushing flow. The reason of the error was that the resuspension process of the 2D model is only the function of shear stress induced by wind. In reality, however, as shown by significant correlation between bottom shear stress ($\tau$) and observed SS concentration, the resuspension process can be significantly influenced by current velocity in the riverine system, especially during flushing event. The results indicate that the resuspension of river bottom materials should be incorporated into the water quality modeling processes if $\tau$ is greater than a critical shear stress (${\tau}_c$) for better simulation of flushing effect.

Lignification in Relation to the Influence of Water-deficit Stress in Brassica napus

  • Lee, Bok-Rye;Zhang, Qian;Kim, Tae-Hwan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.34 no.1
    • /
    • pp.15-20
    • /
    • 2014
  • To investigate lignification process and its physiological significance under water-deficit condition, the responses of peroxidases, polyphenol oxidase (PPO) and phenylalanine ammonia-lyase (PAL) in relation to leaf water status to the short term of water deficit treatment in the leaves with different maturities in forage rape were measured. The significant decrease in relative water content (RWC) and leaf osmotic potential (${\Psi}{\pi}$) were apparent after 5 d of water-deficit treatment. The activity of guaiacol peroxidase (GPOD), ascorbate peroxidase (APOD), coniferyl alcohol peroxidase (CPOD), and syringaldazine peroxidase (SPOD) was depressed especially in middle and old leaves when compared with that of control leaves. On the other hand, in young leaves, a significant increase in CPOD (+34%) and SPOD (+24%) activity as affected by water-deficit treatment was apparent. The activation of PAL and PPO was observed in middle and old leaves for PAL and in young and middle leaves for PPO. These results suggest that peroxidases in middle and old leaves did not involve in lignification under mild water-deficit stress, whereas CPOD and SPOD in young leaves participate in lignification by a coordination with PAL and PPO to incorporate phenol and lignin into the cell walls.