• Title/Summary/Keyword: WATER STRESS

Search Result 3,196, Processing Time 0.032 seconds

Effects of dry density and water content on compressibility and shear strength of loess

  • Guo, Yexia;Ni, Wankui;Liu, Haisong
    • Geomechanics and Engineering
    • /
    • v.24 no.5
    • /
    • pp.419-430
    • /
    • 2021
  • Investigation on the compressibility and shear strength of compacted loess is of great importance for the design and operation of engineering infrastructures in filling area. In this study, the mechanical behaviors of Yan'an compacted loess are investigated at various dry densities and water contents by conducting one dimensional compression and direct shear tests. And the elastic compressibility, plastic compressibility, yield stress and strength are obtained from the experiments. Results show that when water content increases, plastic compressibility parameter increases, but yield stress decreases. However, the increase of dry density leads to a decrease in plastic compressibility parameter but an increase in yield stress. In addition, elastic compressibility parameter is found to be a constant which is irrelevant to water content and dry density. As for strength, cohesion and internal friction angle is directly proportional to dry density, but inversely proportional to water content. Moreover, the mercury intrusion porosimetry (MIP) and scanning electron microscope (SEM) tests were also performed to observe the pore size distribution and microstructure of the specimens. Finally, by using results of MIP and SEM tests, the compressibility and strength behaviours of Yan'an compacted loess are explained from the perspective of pore-size distribution and microstructure.

Evaluation of Thermal Stratification and Primary Water Environment Effects on Fatigue Life of Austenitic Piping (열성층 및 냉각재 환경이 오스테나이트 배관의 피로수명에 미치는 영향 평가)

  • Choi, Shin-Beom;Woo, Seung-Wan;Chang, Yoon-Suk;Choi, Jae-Boong;Kim, Young-Jin;Lee, Jin-Ho;Chung, Hae-Dong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.8
    • /
    • pp.660-667
    • /
    • 2008
  • During the last two decades, lots of efforts have been devoted to resolve thermal stratification phenomenon and primary water environment issues. While several effective methods were proposed especially in related to thermally stratified flow analyses and corrosive material resistance experiments, however, lack of details on specific stress and fatigue evaluation make it difficult to quantify structural behaviors. In the present work, effects of the thermal stratification and primary water are numerically examined from a structural integrity point of view. First, a representative austenitic nuclear piping is selected and its stress components at critical locations are calculated in use of four stratified temperature inputs and eight transient conditions. Subsequently, both metal and environmental fatigue usage factors of the piping are determined by manipulating the stress components in accordance with NUREG/CR-5704 as well as ASME B&PV Codes. Key findings from the fatigue evaluation with applicability of pipe and three-dimensional solid finite elements are fully discussed and a recommendation for realistic evaluation is suggested.

Electrochemical Characteristics of Marine Anti-Corrosive Coating under Shear Flows (전단유동 하에서의 선박용 방식도막의 전기화학 특성)

  • Park, Hyun;Park, Jin-Hwan;Ha, Hyo-Min;Chun, Ho-Hwan;Lee, In-Won
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.2 s.146
    • /
    • pp.268-274
    • /
    • 2006
  • Analysis has been made of the anti-corrosive property of organic coating under the shear stress of the flow by means of AC impedance method. Marine anti-corrosive painted panels were placed in the water channel with varying flow rate, thereby experiencing varying flow shear stress on the surfaces. The velocities of the salt water were ranged from 1.48 to 5.2 m/s and the coating thickness of from $70{\mu}m\;to\;140{\mu}m$. For all coating thicknesses investigated, the poorer anti-corrosive property and the lower adhesion strength have been found for the higher shear stress. It has been found that the shear stress accelerates the aging of organic marine coatings.

EVALUATION OF PRIMARY WATER STRESS CORROSION CRACKING GROWTH RATES BY USING THE EXTENDED FINITE ELEMENT METHOD

  • LEE, SUNG-JUN;CHANG, YOON-SUK
    • Nuclear Engineering and Technology
    • /
    • v.47 no.7
    • /
    • pp.895-906
    • /
    • 2015
  • Background: Mitigation of primary water stress corrosion cracking (PWSCC) is a significant issue in the nuclear industry. Advanced nickel-based alloys with lower susceptibility have been adopted, although they do not seem to be entirely immune from PWSCC during normal operation. With regard to structural integrity assessments of the relevant components, an accurate evaluation of crack growth rate (CGR) is important. Methods: For the present study, the extended finite element method was adopted from among diverse meshless methods because of its advantages in arbitrary crack analysis. A user-subroutine based on the strain rate damage model was developed and incorporated into the crack growth evaluation. Results: The proposed method was verified by using the well-known Alloy 600 material with a reference CGR curve. The analyzed CGR curve of the alternative Alloy 690 material was then newly estimated by applying the proven method over a practical range of stress intensity factors. Conclusion: Reliable CGR curves were obtained without complex environmental facilities or a high degree of experimental effort. The proposed method may be used to assess the PWSCC resistance of nuclear components subjected to high residual stresses such as those resulting from dissimilar metal welding parts.

Effect of degree of compaction & confining stress on instability behavior of unsaturated soil

  • Rasool, Ali Murtaza
    • Geomechanics and Engineering
    • /
    • v.30 no.3
    • /
    • pp.219-231
    • /
    • 2022
  • Geotechnical materials such as silt, fine sand, or coarse granular soils may be unstable under undrained shearing or during rainfall infiltration starting an unsaturated state. Some researches are available describing the instability of coarse granular soils in drained or undrained conditions. However, there is a need to investigate the instability mechanism of unsaturated silty soil considering the effect of degree of compaction and net confining stress under partially and fully drained conditions. The specimens in the current study are compacted at 65%, 75%, & 85% degree of compaction, confined at pressures of 60, 80 & 120 kPa, and tested in partially and fully drained conditions. The tests have been performed in two steps. In Step-I, the specimens were sheared in constant water content conditions (a type of partially drained test) to the maximum shear stress. In Step-II, shearing was carried in constant suction conditions (a type of fully undrained test) by keeping shear stress constant. At the start of Step-II, PWP was increased in steps to decrease matric suction (which was then kept constant) and start water infiltration. The test results showed that soil instability is affected much by variation in the degree of compaction and confining stresses. It is also observed that loose and medium dense soils are vulnerable to pre-failure instability i.e., instability occurs before reaching the failure state, whereas, instability in dense soils instigates together with the failure i.e., failure line (FL) and instability line (IL) are found to be unique.

Non-Newtonian Flow Mechanism for Thixotropic and Dilatant Flow Units of Sodium bis-(2-ethylhexyl)sulfosuccinate-water Micelles (Sodium bis-(2-ethylhexyl)sulfosuccinate-water 미셀의 틱소트로 피와 다일레턴시 유동단위에 대한 비뉴톤 유동메카니즘)

  • Kim, Nam Jeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.540-548
    • /
    • 2016
  • The non-Newtonian flow curves of sodium bis-(2-ethylhexyl)sulfosuccinate-water lamellar liquid crystals were obtained in various concentrations and temperatures by using a cone-plate rheometer. By applying non-Newtonian flow equation to the flow curves for AOT-water lamellar liquid crystal samples, the rheological parameters were obtained. Particular attention is given to the hysteresis loop detected when the liquid crystal samples are shear under increasing-decreasing shear stress modes which result in thixotropic and dilatant behavior. Sodium bis-(2-ethylhexyl)sulfosuccinate-water lamellar liquid crystals behave as weak gels when they are subjected to shear flow, but when the applied stress surpasses the yield stress, they exhibit non-linear viscoelasticity. Upon decreasing shear rate, the dispersion still preserves much of its structure and consequently its shear stress remains higher than the values measured in the increasing shear rate mode.

Physiological Response of Barley to Water Stress and Salt Stress at Seedling Stage (보리 유묘기의 한해와 염해반응)

  • 최원열;박종환
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.6
    • /
    • pp.693-698
    • /
    • 1997
  • Drought resistance and salt resistance of seedlings were compared with the polyethylene glycol(P.E.G) and NaCl solutions of the same osmotic potential($\Psi_\pi$=-10 bar). Plant height, seedling dry weight, chlorophyll content and leaf water potential decreased while the free proline content increased more in the P.E.G. than in the NaCl solution. Free amino acids increased 2.6 times in the P.E.G. solution and 3.6 times in the NaCl solution more than in the untreated(Hoagland's solution). Free proline occupied 66% and 61% of the content of total amino acids under water stress and salt stress, respectively. Besides free proline, phenylalanine in the P.E.G. solution and phenylalanine, alanine and asparagine in the NaCl solution increased distinctly. In short, it was shown that water and salt stress responses in seedling stage were relatively similar.

  • PDF

A Study on Grain Yield Response and Limitations of CERES-Barley Model According to Soil Types

  • Sang, Wan-Gyu;Kim, Jun-Hwan;Shin, Pyeong;Cho, Hyeoun-Suk;Seo, Myung-Chul;Lee, Geon-Hwi
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.6
    • /
    • pp.509-519
    • /
    • 2017
  • Crop simulation models are valuable tools for estimating crop yield, environmental factors and management practices. The objective of this study was to evaluate the effect of soil types on barley productivity using CERES (Crop Environment REsource Synthesis)-barley, cropping system model. So the behavior of the model under various soil types and climatic conditions was evaluated. The results of the sensitivity analysis in temperature, $CO_2$, and precipitation showed that soil types had a direct impact on the simulated yield of CERES-barley model. We found that barley yield in clay soils would be more sensitive to precipitation and $CO_2$ in comparison with temperature. And the model showed limited accuracy in simulating water and nitrogen stress index for soil types. In general, the barley grown on clay soils were less sensitive to water stress than those grown on sandy soils. Especially it was found that the CERES model underestimated the effect of water stress in high precipitation which led to overprediction of crop yield in clay soils. In order to solve these problems and successfully forecast grain yield, further studies on the modification of the water stress response of crops should be considered prior to use of the CERES-barley model for yield forecasting.

Influence of Constipation in Women in Their Twenties on Low Back Pain (20대 여성들의 변비가 허리통증에 미치는 영향)

  • Yu, Ha-young;Jeong, Yeon-woo
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.24 no.2
    • /
    • pp.43-49
    • /
    • 2018
  • Background: In this study, the importance of constipation and back pain was assessed by regression analysis of the effects of stress, dietary habits, and water intake on constipation in women in their twenties and the influence of constipation and body mass index (BMI) To provide basic data. Methods: This study selected 109 having constipation of 120 students attending G University in Gwangju and eating habits, water intake level, stress and BMI. Trigger point at the tip of erector spina was palated with tenderness set in order to examine whether muscle tenderness and actual low back muscle tenderness level were same and left and right parts were measured three times and average of Max values was used. We examined the effect of constipation on low back pain and examined constipation and BMI to determine whether they affected low back pain. Results: There was no significant difference in eating habit although there was a significant difference in the effect of stress and water intake on constipation. Constipation had significant difference in back pain. However, there was no significant difference in BMI, normal weight, overweight, and obesity except for low body weight. Conclusions: This study found that constipation was associated with stress levels, water intake, and back pain. In conclusion, this study suggests basic data to prevent and treat constipation-related back pain, and recommends plenty of water intake, proper exercise and stress management to prevent constipation.