• Title/Summary/Keyword: WATER STRESS

Search Result 3,188, Processing Time 0.028 seconds

Stress Corrosion Cracking Lifetime Prediction of Spring Screw (스프링 체결나사의 응력부식균열 수명예측)

  • Koh, S.K.;Ryu, C.H.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.7-12
    • /
    • 2004
  • A lifetime prediction of holddown spring screw in nuclear fuel assembly was performed using fracture mechanics approach. The spring screw was designed such that it was capable of sustaining the loads imposed by the initial tensile preload and operational loads. In order to investigate the cause of failure and to predict the stress corrosion cracking life of the screw, a stress analysis of the top nozzle spring assembly was done using finite element analysis. The elastic-plastic finite element analysis showed that the local stresses at the critical regions of head-shank fillet and thread root significantly exceeded than the yield strength of the screw material, resulting in local plastic deformation. Normalized stress intensity factors for PWSCC life prediction was proposed. Primary water stress corrosion cracking life of the Inconel 600 screw was predicted by using integration of the Scott model and resulted in 1.78 years, which was fairly close to the actual service life of the holddown spring screw.

  • PDF

SCC Mechanism of Ni Base Alloys in Lead Contaminated Water

  • Hwang, Seong Sik;Kim, Dong Jin;Lim, Yun Soo;Kim, Joung Soo;Park, Jangyul;Kim, Hong Pyo
    • Corrosion Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.187-191
    • /
    • 2008
  • Transgranular stress corrosion cracking of nickel base alloys was reported by Copson and Dean in 1965. Study to establish this cracking mechanism needs to be carried out. Laboratory stress corrosion tests were performed for mill annealed(MA) or thermally treated(TT) steam generator tubing materials in a high temperature water containing lead. An electrochemical interaction of lead with the alloying elements of SG tubings was also investigated. Alloy 690 TT showed a transgranular stress corrosion cracking in a 40% NaOH solution with 5000 ppm of lead, while intergranular stress corrosion racking was observed in a 10% NaOH solution with 100 ppm lead. Lead seems to enhance the disruption of passive film and anodic dissolution of alloy 600 and alloy 690. Crack tip blunting at grain boundary carbides plays a role for the transgranular stress corrosion cracking.

Estimation of residual stress in welding of dissimilar metals at nuclear power plants using cascaded support vector regression

  • Koo, Young Do;Yoo, Kwae Hwan;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.817-824
    • /
    • 2017
  • Residual stress is a critical element in determining the integrity of parts and the lifetime of welded structures. It is necessary to estimate the residual stress of a welding zone because residual stress is a major reason for the generation of primary water stress corrosion cracking in nuclear power plants. That is, it is necessary to estimate the distribution of the residual stress in welding of dissimilar metals under manifold welding conditions. In this study, a cascaded support vector regression (CSVR) model was presented to estimate the residual stress of a welding zone. The CSVR model was serially and consecutively structured in terms of SVR modules. Using numerical data obtained from finite element analysis by a subtractive clustering method, learning data that explained the characteristic behavior of the residual stress of a welding zone were selected to optimize the proposed model. The results suggest that the CSVR model yielded a better estimation performance when compared with a classic SVR model.

Density Effect on Suction Stress Characteristics of Compacted Weathered Gneiss Soils (편마풍화토의 다짐밀도에 따른 불포화 흡수응력 특성)

  • Park, Seong-Wan;Kim, Byeong-Su;Kwon, Hong-Gi;Lim, Jae-Seong
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.8
    • /
    • pp.15-25
    • /
    • 2013
  • In order to examine the unsaturated shear strength characteristics of compacted weathered gneiss soils, the constant water content compression (CWCC) test was carried out. Specimens were made by static compaction under two densities conditions. The shear behavior in accordance with an initial suction obtained by varying initial degrees of saturation was evaluated. The suction could be directly measured by the use of the ceramic disk and the pore-water pressure transducer. The results of the peak shear strength from the CWCC test were examined using the relationship with Mp line from triaxial test under the saturated state, that is, by means of the suction stress which was calculated using the measured suction. In addition, the applicability of the suctions stress to the unsaturated shear behaviour of compacted weathered gneiss soils was discussed by applying Suction stress-SWCC Method (SSM).

Incipient motion criteria of uniform gravel bed under falling spheres in open channel flow

  • Khe, Sok An;Park, Sang Deog;Jeon, Woo Sung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.149-149
    • /
    • 2018
  • Prediction on initial motion of sediment is crucial to evaluate sediment transport and channel stability. The condition of incipient movement of sediment is characterized by bed shear stress, which is generated from force of moving water against the bed of the channel, and by critical shear stress, which depends on force resisting motion of sediment due to the submerged weight of the grains. When the bed shear stress exceeds the critical shear stress, sediment particles begin rolling and sliding at isolated and random locations. In Mountain River, debris flow frequently occurs due to heavy rainfall and can lead some natural stones from mountain slope into the bed river. This phenomenon could add additional forces to sediment transport system in the bed of river and also affect or change direction and magnitude of sediment movement. In this paper, evaluations on incipient motion of uniform coarse gravel under falling spheres impacts using small scale flume channel were conducted. The drag force of falling spheres due to water flow and length movement of falling spheres were investigated. The experiments were carried out in flume channel made by glass wall and steel floor with 12 m long, 0.6 m wide, and 0.6 m deep. The bed slopes were selected with the range from 0.7% to 1.5%. The thickness of granular layer was at least 3 times of diameter of granular particle to meet grain placement condition. The sphere diameters were chosen to be 4cm, 6 cm, 8 cm, 10 cm. The spheres were fallen in to the bed channel for critical condition and under critical condition of motion particle. Based on the experimental results, the Shields curve of particles Reynold number and dimensionless critical shear stress were plotted. The relationship between with drag force and the length movement of spheres were plotted. The pathways of the bed material Under the impact of spheres falling were analyzed.

  • PDF

Inhibitory Effects of Litsea japonica Flesh Water Extract against Endoplasmic Reticulum Stress in HepG2 Cells (HepG2 세포에서 까마귀쪽나무 과육 열수 추출물의 소포체 스트레스 억제 효능)

  • Kim, Eun Ok;Jegal, Kyung Hwan;Kim, Jae Kwang;Lee, Ju Sang;Park, Chung A;Kim, Sang Chan;Cho, Il Je
    • Herbal Formula Science
    • /
    • v.26 no.4
    • /
    • pp.307-318
    • /
    • 2018
  • Objectives : Endoplasmic reticulum (ER) stress designates cellular responses to the accumulation of misfolded and unfolded proteins in ER, which is related to a variety of liver diseases. Present study investigated the inhibitory effects of Litsea japonica flesh water extract (LJE) aganist ER stress. Methods : After HepG2 cells were pretreated with LJE and subsequently exposed to tunicamycin (Tm) or thapsigargin (Tg), expression of C/EBP homologous protein (CHOP), glucose regulated protein 78 kDa (GRP78), asparagine synthetase (ASNS), and endoplasmic reticulum DnaJ homologue 4 (ERDJ4) were determined by immunoblot and real-time PCR analysis. Three canonical signaling pathways in response to ER stress were examined to explore molecular mechanisms involved. Results : Pretreatment of 1 mg/mL LJE inhibited Tm- or Tg-induced CHOP expression, while L. japonica fruit water extract did not. In addition, LJE decreased the levels of GRP78, ASNS, and ERDJ4 mRNA by Tm. Moreover, phosphorylations of eukaryotic translation initiation factor $2{\alpha}$ and inositol-requiring enzyme 1, expression of nuclear form of activating transcription factor $6{\alpha}$, and transactivation of ER stress response element- and unfolded protein response element-harboring luciferase activities were inhibited by LJE pretreatment. Conclusions : Present results suggest that LJE would be a candidate to prevent or treat ER stress-mediated liver injuries.

The Effects of Water Status on the Growth in Nicotiana tabacum L. (var. Samsun). (연초의 생육에 미치는 수분의 영향)

  • Kim, Nam-Won;Yoon, Kyong-Eun
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.4 no.2
    • /
    • pp.3-10
    • /
    • 1982
  • This experiment was conducted to study the effect of soil water potenial on the growth and internal changes of stressed plants. The experimental imposition of soil water potential ( $\Psi$soil) were -0.1 to -0.2, -0.2 to -0.5, -0.5 to -3.0, -3.0 to -10.0 bar respectively. During water stress all growth rates were depressed, and the most sensitive period to water stress was found to be 10 to 25 days after transplanting. The water potential of leaf was declined rapidly within 12 hours after with holding of water. Nitrate reductase activity was decreased progressively as water deficit was built up in tobacco leaves, but the activity of alpha- amylase and super contents were increased. There were differences in peroxidase isozyme patterns between tile control and water stressed plant. New isozymes started to appear as tobacco leaf water potential decreased.

  • PDF

Characteristic of Matter Allocation of Calystegia soldanella under Water Stress (갯메꽃의 수분스트레스에 대한 물질분배 특성)

  • Park, Yong Mok
    • Journal of Environmental Science International
    • /
    • v.22 no.2
    • /
    • pp.187-193
    • /
    • 2013
  • Dry matter allocation characteristics of Calystegia soldanella, grown in pots, was analysed to assess its plasticity in response to water-stressed conditions. As water was withheld leaf water potential between the two watering treatments was similar during the first 6 days, followed by a rapid decrease in water-stressed plants. The minimum leaf water potential was -1.50 MPa on day 15 and the maximum leaf water potential was about -0.5 MPa on day 0 in water-stressed plants. In well-watered plants leaf water potential was maintained almost consistently throughout the experiment. There was no significant difference in plant dry weight between the two watering treatments for 9 days after the start of experiment and that was remarkably increased thereafter, compared with that remained without any increase in water-stressed plants. In dry mass partitioning, however, the water-stressed plants showed a great plasticity, showing that there were 1.81, 1.35 and 0.81 times increase in root, stem and leaf, respectively. Dry mass partitioning in well-watered plants varied from 2% to 5%. The difference of dry mass partitioning between the two watering treatments was reflected in leaf mass per unit area (LMA) and root/shoot (R/S) ratio. LMA in water-stressed plants was lower than that in well-watered plants, while R/S ratio in water-stressed plants was higher in well-watered plants. This means that the water-stressed plants reduced its leaf area and increased dry mass partitioning into root and stem during the progress of soil drying. These results indicate that Calystegia soldanella inhabiting in sand dune cope with water stress with high plasticity which can adjust its dry mass partitioning according to soil water conditions.

Research of Novel Water Cooling Jacket for Explosion-proof Motor

  • Wang, Yu;He, Huiming;Bai, Baodong
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.1
    • /
    • pp.67-71
    • /
    • 2014
  • The well tightness of the coal mining water-cooling explosion-proof motor results in difficult heat dissipation, high hydraulic pressure is needed to increase the cooling effect. However, high hydraulic pressure may lead motor shell to deform, which makes it difficult to change the motor and maintain the motor unit. The method of adding keyhole caulk weld spots on the outer cooling water jacket was proposed to solve the problem. Based on the elasticity mechanics equations and the principle of finite element method the stresses and the deformations of the traditional and novel outer cooling water jacket were calculated separately. A hydraulic pressure experiment of the both cooling water jackets was constructed. Obviously, the stress and the deformation of the novel cooling water jacket are lower. The experimental result is consistent with the simulation results. It is effective to reduce the stress and the deformation of the cooling water jacket by adding the keyhole caulk weld spots.

Comparison of Adjustments to Drought Stress Among Seedlings of Several Oak Species

  • Kim, Joon-Ho
    • Journal of Plant Biology
    • /
    • v.37 no.3
    • /
    • pp.343-347
    • /
    • 1994
  • In order to compare the adjustment of 6 oak species to water stress, the components of water status, tissue elastic modulus, free proline content of leaves and morphological characteristics were determined in pot culture. uercus dentata and . mongolica responded effectively to drought with high root : shoot (R/S) ratio or maintenance of high turgor pressure by large and fast osmotic adjustment and . variabilis with maintenance of high turgor pressure by low elastic modulus under drought. Meanwhile, . aliena and . serrata responded effectively with low omotic potential (Ψo) at full saturation and . acutissima with long root in spite of rigid cell wall and high osmotic potential (Ψo) at full saturation. Proline content in leaves of . dentata, . mongolica and . aliena increased early and rapidly at high leaf water potential (Ψleaf). The results indicate that 6 oak species have adjustment different from each other to water stress.

  • PDF