• Title/Summary/Keyword: WASTE CONCRETE

Search Result 1,126, Processing Time 0.021 seconds

Problems in Strength Characteristics of Recycled Waste Concrete (폐콘크리트 재활용에 있어서 강도특성상의 문제점)

  • 김광우;연규석;이병덕
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.44-49
    • /
    • 1992
  • Selected strength characteristics of recycled concrete using crushed waste concrete were compared with those of conventional concrete using natural aggregate. Compressive strength, bonding at the interface between recycled aggregate and fresh mortar, strain and deflection under three-point bending were evaluated. Recycled concrete, in general, showed lower compressive strength, lower edlastic modulus, higher stain and higher deflection under the same loading level, compared with those of conventional concretes. However, the strength retaining ratios of recycled concretes were higher than those of conventional concretes. The compressive strength which is one of the most important load carrying capacities of concrete should be improved for successful re-use of waste concrete in structural concrete.

Geoenvironmental Characteristics of Waste Concrete for Reusing in Civil Works (폐콘크리트 재활용을 위한 지반환경공학적 특성 분석)

  • 정하익;김상근;정길수;진현식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.536-541
    • /
    • 2000
  • In recent years there has been a steady increase in geoenvironmental engineering research where geotechnical engineering has been combined with environmental concerns in the field of construction and industrial waste reusing in civil works. Many of these projects involve some investigation on the characteristics of geotechnical and environmental properties. In this study, investigation and test on the characteristics of demolished waste concrete was carried out to detect the physical, mechanical, and environmental properties for reusing as embankment and backfill materials in civil works.

  • PDF

Evaluation on the Applicability of Heavy Weight Waste Glass as Fine Aggregate of Shielding Concrete (고밀도 폐유리의 차폐 콘크리트 잔골재로의 활용가능성 평가)

  • Choi, So-Yeong;Choi, Yoon-Suk;Won, Min-Sik;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.101-108
    • /
    • 2015
  • The quantities of heavy weight waste glass have been progressively increased because of the rapid industrialization and the change of quality of life. And, the most of them are not recycled. The heavy weight waste glass have been treated by illegal dumping or being buried in landfills. Meanwhile, in order to ensure the safety of nuclear power plant structure, the excellent construction materials are socially required for shielding performance. Concrete is the most widely used construction material, the huge amounts of natural resources are required to make concrete. So, it is needed to investigate the possibility of recycling of heavy weight waste glass as concrete material ingredient. In this study, the heavy weight waste glass was evaluated for the applicability as fine aggregate of shielding concrete. From the results, when heavy weight waste glass was replaced as fine aggregate of mortar, shielding performance can be improved due to increasing in unit weight of mortar. It showed that the strength decreased according to mixing of heavy weight waste glass, Non-Washed heavy weight waste glass is more advantageous in the strength development than Washed case.

A study on the application of waste concrete powder as a material for construction (건설용 재료로써 폐콘크리트 미분말의 활용성 연구)

  • Kim, Yong-Jic;Choi, Yun-Wang;Kim, Sang-Chel;Kim, Young-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.88-94
    • /
    • 2012
  • This study is conducted to utilize waste concrete powder made as a by-product manufacturing high quality recycled aggregate. The blaine fineness of the used waste concrete powder was 928 and $1,360cm^2/g$. As the main characteristic of waste concrete powder, it showed an angular type similar to cement, but hydrated products were attached on the surface of particles. In addition, the size of the particles of waste concrete powder was larger than OPC and in terms of chemical components it had higher $SiO_2$ contents. The viscosity of the paste that mixed waste concrete power decreased by 62% at the most, compared to the paste that only used OPC, and the final set time was delayed about two hours. As composition rates of waste concrete powder increased, the flow value decreased by 30% at the most according to the comparison with mortar that only used OPC, and sorptivity coefficients increased by 70%. The compressive strength of mortar decreased by 73% at the most as composition rates of waste concrete powder increased. According to the test results, it is desirable to use waste concrete powder by combining OPC appropriately(below 15%).

  • PDF

Recycling Technology Trend of Waste Concrete Powder for Carbon Neutrality in the Cement Industry (시멘트 산업 탄소중립을 위한 폐콘크리트 미분말의 재활용 기술 동향)

  • Sang-Chul, Shin;Jin-Man, Kim;Geon-Woo, Kim;In-Gyu, Kang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.465-474
    • /
    • 2022
  • Research on the recycling of waste concrete has been conducted mainly focusing on the production of high-quality recycled ag g reg ate, and as a result, standards and specifications for recycled ag g reg ate have been established. However, in the case of waste concrete powder, although a lot of research on its utilization has been conducted in Korea, an innovative technology leading to commercialization has not yet been announced. Recently, research on technology using waste concrete powder as a raw material for clinker or cement has been actively conducted in major overseas advanced countries. This study investigated the overseas cases with regard to high value-added recycling technology and commercialization trend of waste concrete powder for carbon neutrality in cement and concrete industries. A number of studies have reported that it is essential to completely separate the aggregate and hydrated cement paste fraction for recycling of waste concrete powder. Also in major foreig n countries such as EU and USA, commercialization and standardization of using waste concrete powder as a raw material for clinker or a additive for cement are now in progress beyond the R&D stage. Therefore, Research and standardization for recycling of waste concrete powder should be urgently carried out from the perspective of carbon neutrality in Korea.

Porosity and Strength Properties of Permeable Concrete Using Limestone Mine Wastes as Coarse Aggregate for Concrete (폐석회석 굵은골재를 사용한 투수 콘크리트의 공극 및 강도특성)

  • 최연왕;임학상;정지승;문대중;신화철
    • Resources Recycling
    • /
    • v.12 no.2
    • /
    • pp.11-20
    • /
    • 2003
  • Limestone mine waste was used as a aggregate far permeable concrete. Void ratio, continuous void ratio, coefficient of permeability, compressive strength and flexural strength of concrete were measured and then the relationship between porosity and strength properties was investigated. Void ratio, continuous void ratio and strength properties of permeable concrete were greatly influenced by the grain size of aggregate and void filling ratio in comparison with the containing ratio of limestone mine waste. Furthermore, void ratio showed a good relation with continuous void ratio, and porosity of permeable concrete indicated a good relation with strength properties also. The coefficient of permeability of permeable concrete using limestone waste was over 0.2 cm/sec and was excellent result in comparison with normal concrete. Therefore, it could be expected that the limestone mine waste would be utilized as aggregate for pavement concrete, green concrete and water resource specie concrete in the results of this study.

Verification of the adequacy of domestic low-level radioactive waste grouping analysis using statistical methods

  • Lee, Dong-Ju;Woo, Hyunjong;Hong, Dae-Seok;Kim, Gi Yong;Oh, Sang-Hee;Seong, Wonjun;Im, Junhyuck;Yang, Jae Hwan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2418-2426
    • /
    • 2022
  • The grouping analysis is a method guided by the Korea Radioactive Waste Agency for efficient analysis of radioactive waste for disposal. In this study, experiments to verify the adequacy of grouping analysis were conducted with radioactive soil, concrete, and dry active waste in similar environments. First, analysis results of the major radionuclide concentrations in individual waste samples were reviewed to evaluate whether wastes from similar environments correspond to a single waste stream. As a result, the soil and concrete waste were identified as a single waste stream because the distribution range of radionuclide concentrations was "within a factor of 10", the range that meet the criterion of the U.S. Nuclear Regulatory Commission for a single waste stream. On the other hand, the dry active waste was judged to correspond to distinct waste streams. Second, after analyzing the composite samples prepared by grouping the individual samples, the population means of the values of "composite sample analysis results/individual sample analysis results" were estimated at a 95% confidence level. The results showed that all evaluation values for soil and concrete waste were within the set reference values (0.1-10) when five-package and ten-package grouping analyses were conducted, verifying the adequacy of the grouping analysis.

Properties of Lightweight Foamed Concrete with Waste Styrofoam and Crude Steel Cement (폐스티로폼과 조강시멘트를 혼입한 경량기포콘크리트의 특성)

  • Park, Chae-Wool;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.77-78
    • /
    • 2020
  • In Korea, more than 30,000 tons of waste Styrofoam are produced every year. Styrofoam is spent more than 500 years decomposing during the reclamation process, so it needs to be recycled. The recycling rate of waste styrofoam continues to be the third highest in the world, but it is lower than that of Germany and Japan. Therefore, measures are needed to increase the recycling rate of waste Styropol. Another problem is that cement is mainly used in existing lightweight foam concrete. However, large amounts of CO2 from cement-producing processes cause environmental pollution. Currently, Korea is increasing its greenhouse gas reduction targets to cope with energy depletion and climate change, and accelerating efforts to identify and implement reduction measures for each sector. In 2013 alone, about 600 million tons of carbon dioxide was generated in the cement industry. Therefore, this study replaces CO2 generation cement with furnace slag fine powder, uses crude steel cement for initial strength development of bubble concrete, and manufactures hardening materials to study its properties using waste styrofoam. As a result of the experiment, the hardening agent replaced by micro powder of furnace slag was less intense and more prone to absorption than cement using ordinary cement. Further experiments on the segmentation and strength replenishment of furnace slag are believed to contribute to the manufacture of environmentally friendly lightweight foam concrete.

  • PDF

A Study on recycling of waste concrete for ${PO}_4^{3-}$-P removal contained in livestock wastewater (축산폐수에 함유된 ${PO}_4^{3-}$-P의 제거를 위한 폐콘크리트의 재활용에 관한 연구)

  • 김은호;박진식;성낙창;이영형;신남철;전기일
    • Journal of Environmental Science International
    • /
    • v.8 no.2
    • /
    • pp.227-231
    • /
    • 1999
  • This study was conducted to investigate the removal characteristics of $PO_4^{3-}-P$ contained in livestock wastewater using waste concrete. With small particle size, increased dosage and temperature of water, $PO_4^{3-}-P$ was well removed by waste concrete.$PO_4^{3-}-P$ was removed by adsorption reaction in low pH of the primary phase, but the crystallization reaction predominated for increasing pH with passed time. As a result of adapting the adsorption isotherm equation, $PO_4^{3-}-P$ removal was more affected by the crystallization reaction than the adsorption reaction. In the SEM micrograph, there was no evident change on the waste concreter surface. Particle size was plate-phase before reaction but appeared a dense form to progress in the crystallization reaction.

  • PDF

An Experimental Study on the Freeze-Thaw Resistance of Concrete Containing Waste Glass (폐유리를 혼입한 콘크리트의 동결융해 저항성에 관한 실험적 연구)

  • Park, Seung-Bum;Cheong, Myeong-Il;Lee, Bong-Chun;Lee, Jun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.593-598
    • /
    • 2002
  • Recently, as industrialization is rapidly growing and the standard of life is rising, the quantities of waste glasses have been hastily increased and most of them are not recycled but abandoned. It causes some problems such as the waste of natural resources and environmental pollution. Therefore, in this study freeze-thaw resistance test was conducted to analyze the properties of concrete containing waste glasses as fine aggregates and containing industrial by-products (fly ashes, silica fumes). As a results, it was found that freeze-thaw resistance decreases as the content of waste glasses increases. Also, the content of fly ash doesn't affect to the freeze-thaw resistance, and freeze-thaw resistance decreases with tile increase of silica fume contents.

  • PDF