• Title/Summary/Keyword: WAMIS

Search Result 83, Processing Time 0.024 seconds

GIS-Based Water Resources Management Information System (WAMIS) in Korea (GIS 기반의 수자원관리정보시스템 (WAMIS))

  • Kim, Seong-Joon
    • Korean Journal of Ecology and Environment
    • /
    • v.34 no.4 s.96
    • /
    • pp.349-356
    • /
    • 2001
  • This paper briefly describes the classification of GIS- based model, and introduces some practical grid- based models such as TOPMODEL (Beven of al., 1979, 1984), AGNPS (Young of al., 1989), KIMSTORM (Kim, 1998; Kim of al,, 1998), and GRISMORM (Kim of al.,20110). Current status of GIS data construction promoted by Ministry of Construction and Transportation (MOCT) and system development of water resources information by Korea Water Resources Corporation (KOWACO) is briefly described. Further research needs for GIS-based modeling will be emphasized with some recommendations on GIS data preparation and proper field observation data collection.

  • PDF

A Study on Establishment of the Levee GIS Database Using LiDAR Data and WAMIS Information (LiDAR 자료와 WAMIS 정보를 활용한 제방 GIS 데이터베이스 구축에 관한 연구)

  • Choing, Yun-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.3
    • /
    • pp.104-115
    • /
    • 2014
  • A levee is defined as an man-made structure protecting the areas from temporary flooding. This paper suggests a methodology for establishing the levee GIS database using the airborne topographic LiDAR(Light Detection and Ranging) data taken in the Nakdong river basins and the WAMIS(WAter Management Information System) information. First, the National Levee Database(NLD) established by the USACE(United States Army Corps Engineers) and the levee information tables established by the WAMIS are compared and analyzed. For extracting the levee information from the LiDAR data, the DSM(Digital Surface Model) is generated from the LiDAR point clouds by using the interpolation method. Then, the slope map is generated by calculating the maximum rates of elevation difference between each pixel of the DSM and its neighboring pixels. The slope classification method is employed to extract the levee component polygons such as the levee crown polygons and the levee slope polygons from the slope map. Then, the levee information database is established by integrating the attributes extracted from the identified levee crown and slope polygons with the information provided by the WAMIS. Finally, this paper discusses the advantages and limitations of the levee GIS database established by only using the LiDAR data and suggests a future work for improving the quality of the database.

On Study of Runoff Analysis Using Satellite Information (위성자료를 이용한 유출해석에 관한 연구)

  • Kang, Dong Ho;Jeung, Se Jin;Kim, Byung Sik
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.2
    • /
    • pp.13-23
    • /
    • 2021
  • This study intended to assess the reliability of topographic data using satellite imaging data. The topographical data using actual instrumentation data and satellite image data were established and applied to the rainfall-leak model, S-RAT, and the topographical data and outflow data were compared and analyzed. The actual measurement data were collected from the Water Resources Management Information System (WAMIS), and satellite image data were collected from MODIS observation sensors mounted on Terra satellites. The areas subject to analysis were selected for two rivers with more than 80% mountainous areas in the Han River basin and one river basin with more than 7% urban areas. According to the analysis, the difference between instrumentation data and satellite image data was up to 50% for peak floods and up to 17% for flood totals in rivers with high mountains, but up to 13% for peak floods and up to 4% for flood totals. The biggest difference in the video data is Landuse, which shows that MODIS satellite images tend to be recognized as cities up to 60% or more in urban streams compared to WAMIS instrumentation data, but MODIS satellite images are found to be less than 5% error in forest areas.

Reorganization of Water Rights Data Based on Water Management Information System (WAMIS) (국가 수자원 관리 종합 정보 시스템(WAMIS)을 기초로 한 유역 수리권 자료 재구성)

  • Kim, Jung Ho;Kim, Tae Jin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.282-282
    • /
    • 2015
  • 도시화로 인한 지구 온난화는 현재 전 세계적으로 기후 및 자연환경에 적지 않은 영향을 미치고 있으며, 인구증가에 따른 물 부족 현상은 새로운 저수지 건설로 지속 가능한 수자원 개발이 불가능한 현 상황에서 더욱더 악화되고 있는 실정이다. 이에 따라 제한된 물 사용에 대한 효율적인 배분이 필요한 상황이며 이를 위하여 사용 가능한 물에 대한 권리, 즉 수리권(water rights)에 대한 자료 및 조사가 필요한 상황이다. 현재 국내 수리권에 대한 자료는 국가 수자원 관리 종합 정보 시스템(Water Management Information System, WAMIS)에서 특정년도에 생활, 공업 및 농업용수에 대하여 정보가 권역, 시도 및 하천등급별로 구성되어 있는 상황이다. 이에 따라 본 연구에서는 텍사스 수자원 관리 모델인 Water Availability Model(WAM) 시스템의 구성 요소 모델인 Water Rights Analysis Package (WRAP) 모델에 적용하기 위하여 권역별로 구성되어 있는 수리권 정보를 물 사용자의 지정학적 위치 및 점용년도에 따라 재구성하였다. 한강유역의 수리권 정보를 중점으로 수행되었으며 재구성 수리권 정보는 자연 순위 (natural order) 및 우선 순위 (priority order) 수리권의 두가지 형태의 입력값으로 WRAP 모델에 활용되었다.

  • PDF

Estimation of the Change in Ground Water Level using Regression Analysis (회귀분석을 이용한 지하수 수위 변화 추정)

  • Kim, Sang-Min;Ahn, Byeong-Il
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.51-58
    • /
    • 2011
  • The objective of this study is to identify whether or not the ground water level is decreasing. We suggest a method of estimating the change in groundwater level using newly developed groundwater pumping station data. The Goseong area located in Gyeongnam province was selected considering three factors. First, this area demands relatively large amount of irrigation water because most of the land is used as a paddy field and the proportion of the paddy field within total arable land is increasing. Second, groundwater level data in nearby area are available since these are monitored by Water Management Information System (WAMIS). Third, many groundwater pumping stations have been developed in this area in order to overcome droughts thus detail information for pumping stations are available. Regression results indicate groundwater level has been decreased for over 20 years. This decreasing trend is due to the shortage of surface irrigation water which was caused by the decrease in rainfall.

CAgM, USDA and the National Drought Policy Commission Associated with WAMIS (농업기상웹서버관련 농업기상위원회, 농무성 및 한발정책위원회 현황)

  • Motha, Raymond P.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.2
    • /
    • pp.140-147
    • /
    • 2004
  • Agrometeorological information is essential in many agricultural decisions if it reaches the user in a timely and appropriate manner. Agriculture is the backbone to local, regional, and global economic development. Thus, strengthening agrometeorological application to diverse agricultural sectors will benefit economic development. This paper discusses three distinct organizational minions that all share the same need for improved information technology. The World Meteorological Organization's (WMOs) Commission for Agricultural Meteorology (CAgM) has global responsibility for improved agrometeorological services of Members to aid agricultural production and to conserve natural resources. The United States Department of Agriculture, World Agricultural Outlook Board, publishes monthly World Agricultural Supply and Demand Estimates, considered to be a benchmark for both government and industry in production and trade decisions. The National Drought Policy Commission (NDPC), created by an act of the United States Congress, formulated a national drought policy based on preparedness rather than on crisis management. All three organizations recognize the need for IT applications in agricultural meteorology and have been active in implementing this technology. The development of information technology offers new means of dissemination of agrometeorological products. World Agrometeorological Information Service (WAMIS) has taken advantage of the global Internet application to offer WMO Members a dedicated web server to host agrometeorological bulletins and training modules.

CAgM, USDA and the National Drought Policy Commission Associated with WAMIS

  • Motha, Raymond P.
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2003.09a
    • /
    • pp.179-187
    • /
    • 2003
  • This paper discusses three distinct organizational missions that all share the same need for improved information technology. The World Meteorological Organization's (WMOs) Commission for Agricultural Meteorology (CAgM) has global responsibility for improved agrometeorological services of Members to aid agricultural production and to conserve natural resources.(omitted)

  • PDF

Direct Runoff Simulation using CN Regression Equation for Bocheong Stream (유출곡선지수 회귀식을 이용한 보청천유역의 직접유출 모의연구)

  • Kwak, Jae Won;Kim, Soo Jun;Yin, Shan hua;Kim, Hung Soo
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.4
    • /
    • pp.590-597
    • /
    • 2010
  • NRCS Curve Number (CN) method is widely used for practical purposes in the field by engineers and researchers to calculate direct runoff from total rainfall. However, CN is obtained from antecedent moisture condition and soil characteristics and so it has some problems due to its uncertainty. Therefore this study estimated CN of a watershed using asymptotic CN method which can estimate CN by rainfall and runoff data and compared the result with representative CN given by WAMIS. And we performed runoff simulation for rainy season of Bocheong stream by CN regression equation. From the result, we showed that it could be more reasonable to simulate direct runoff using watershed CN regression equation than WAMIS CN. Furthermore, we knew that the equation is more sensitive to small rainfall event.

Implementation Strategy of Global Framework for Climate Service through Global Initiatives in AgroMeteorology for Agriculture and Food Security Sector (선도적 농림기상 국제협력을 통한 농업과 식량안보분야 전지구기후 서비스체계 구축 전략)

  • Lee, Byong-Lyol;Rossi, Federica;Motha, Raymond;Stefanski, Robert
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.2
    • /
    • pp.109-117
    • /
    • 2013
  • The Global Framework on Climate Services (GFCS) will guide the development of climate services that link science-based climate information and predictions with climate-risk management and adaptation to climate change. GFCS structure is made up of 5 pillars; Observations/Monitoring (OBS), Research/ Modeling/ Prediction (RES), Climate Services Information System (CSIS) and User Interface Platform (UIP) which are all supplemented with Capacity Development (CD). Corresponding to each GFCS pillar, the Commission for Agricultural Meteorology (CAgM) has been proposing "Global Initiatives in AgroMeteorology" (GIAM) in order to facilitate GFCS implementation scheme from the perspective of AgroMeteorology - Global AgroMeteorological Outlook System (GAMOS) for OBS, Global AgroMeteorological Pilot Projects (GAMPP) for RES, Global Federation of AgroMeteorological Society (GFAMS) for UIP/RES, WAMIS next phase for CSIS/UIP, and Global Centers of Research and Excellence in AgroMeteorology (GCREAM) for CD, through which next generation experts will be brought up as virtuous cycle for human resource procurements. The World AgroMeteorological Information Service (WAMIS) is a dedicated web server in which agrometeorological bulletins and advisories from members are placed. CAgM is about to extend its service into a Grid portal to share computer resources, information and human resources with user communities as a part of GFCS. To facilitate ICT resources sharing, a specialized or dedicated Data Center or Production Center (DCPC) of WMO Information System for WAMIS is under implementation by Korea Meteorological Administration. CAgM will provide land surface information to support LDAS (Land Data Assimilation System) of next generation Earth System as an information provider. The International Society for Agricultural Meteorology (INSAM) is an Internet market place for agrometeorologists. In an effort to strengthen INSAM as UIP for research community in AgroMeteorology, it was proposed by CAgM to establish Global Federation of AgroMeteorological Society (GFAMS). CAgM will try to encourage the next generation agrometeorological experts through Global Center of Excellence in Research and Education in AgroMeteorology (GCREAM) including graduate programmes under the framework of GENRI as a governing hub of Global Initiatives in AgroMeteorology (GIAM of CAgM). It would be coordinated under the framework of GENRI as a governing hub for all global initiatives such as GFAMS, GAMPP, GAPON including WAMIS II, primarily targeting on GFCS implementations.