• Title/Summary/Keyword: WALKING SPEED

Search Result 611, Processing Time 0.026 seconds

The Effect of Backward Walking Training in the Walking Speed and Balance Capability of Patients with Hemiplegia (편마비 환자에 대한 후방보행 훈련이 보행 속도와 균형 능력에 미치는 영향)

  • Ki, Kyong-Il;Kim, Suhn-Yeop;Oh, Duk-Wyon;Kim, Kyung-Hwan
    • Journal of Korean Physical Therapy Science
    • /
    • v.16 no.2
    • /
    • pp.1-9
    • /
    • 2009
  • Background: The ability for backward walking is considered to be necessary for the neuromuscular control and maintenance of balance in daily ambulatory activity. This study aimed to determine the effect of backward walking training on the walking speed and balance control in patients with hemiplegia. Methods: Fourteen patients with hemiplegia were randomly allocated to an experimental and control groups of seven patients each. For the experimental group, we performed both conventional training and backward walking training, and conventional training only for the control group. The conventional training programs for the 2 groups were conducted for 30 min, twice a day, 5 times a week for 4 weeks, and backward walking training for the experimental group was conducted for 30 min, 3 times a week. The outcomes were assessed using the functional reach test (FRT), timed up-and-go (TUG) Test, and the 10 meter walk time test (10mWT). Result: A comparison of the FRT, TUG test, and 10mWT scores obtained before and after the 4-week treatment revealed statistically significant differences (p<.05) for the experimental group; however, there was no such difference in the case of the control group (p>.05). On assessment after the 4-week treatment, statistically significant differences were noted in the TUG test and 10mWT scores of the experimental group (p<.05). Conclusion: Our findings suggest that backward walking training is an effective clinical strategy for improving the walking speed and functional mobility of patients with hemiplegia.

  • PDF

Community ambulation in patients with chronic post-stroke hemiparesis : Comparison of walking variables in five different community situations (만성 뇌졸중 환자의 지역사회 보행: 다섯 보행 조건의 비교)

  • Hwang, Eun-Ok;Oh, Duck-Won;Kim, Suhn-Yeop
    • Journal of Korean Physical Therapy Science
    • /
    • v.16 no.1
    • /
    • pp.31-39
    • /
    • 2009
  • Background: Community ambulation has been recently recognized as one of the most essential factors of activities of daily living in patients with post-stroke hemiparesis. This study aimed to compare walking velocity and step number in 5 community situations in patients with post-stroke hemiparesis. Methods: Ten chronic stroke patients volunteered for this study. The main variables analyzed were walking speed and step number, and these were measured in 5 different community situations: a physical therapy room, a parking lot, a bank, a crosswalk, and a hospital lobby. The measurements obtained for walking in the physical therapy room were measured using a 10m walk test and were used as baseline data for comparison with each option. The ambulation distance was set at 300m for the parking lot and the bank and 150m for the crosswalk and hospital lobby. For data analysis, walking speed and step number were standardized with the distance options of each ambulation. Results: Compared to the walking speed in the physical therapy room, those in the other situations, except for the parking lot, were significantly different (p<.05). Moreover, there were significant differences in the speeds between the bank and the parking lot and between the parking lot and the crosswalk (p<.05). Compared to the step number in the physical therapy room, those in all situations except for the crosswalk were significantly different (p<.05). Further, there was a significant difference in the step number between the bank and the crosswalk (p<.05). Conclusion: The walking ability of patients with hemiparesis in real environments within a community could be different from that in a physical therapy room. Therefore, the evaluation of walking should be performed in a variety of community situations.

  • PDF

얀센 메커니즘을 적용한 보행 로봇 다리의 운동학 해석

  • Kim, Yeong-Du;Bang, Jeong-Hyeon
    • CDE review
    • /
    • v.22 no.2
    • /
    • pp.6-10
    • /
    • 2016
  • This paper presents the kinematics of a walking robot leg based on Jansen mechanism. By using simple mathematics, all trajectories of walking robot leg links can be calculated. A foot point trajectory is used to evaluate the performance of a walking robot leg. Trial and Error method is used to find a best combination of link lengths under certain restrictions. All simulations are performed by Matlab. Ground score, drag score, step size, foot lift, instant speed, and average speed of foot point trajectories are used for selecting the best one.

  • PDF

The Effect of Visual Stimulation on Gait Parameters During Backward Walking in Healthy Individuals (정상인의 후방 보행 시 시각 자극이 보행 변수에 미치는 영향)

  • Han-Byeol Sung;Ji-won Seo;Jung-Hyun Cho;Young-Keun Woo
    • PNF and Movement
    • /
    • v.22 no.1
    • /
    • pp.91-99
    • /
    • 2024
  • Purpose: Backward walking has shown positive effects on gait recovery in rehabilitation patients. It is increasingly used as an aerobic training method in rehabilitation populations, inducing more sensory and motor stimulation than forward walking. Therefore, the purpose of this study is to investigate the effects of visual stimulation during backward walking. Methods: Twenty-seven healthy adults with a visual acuity of 0.8 or higher participated in the study. To compare the effects of visual stimulation during various walking conditions among healthy individuals, the participants randomly selected cards numbered one to six and walked a distance of 10 meters. Walking ability was measured using Optogait. Results: Statistically significant differences were observed in speed, stride, and percentages of single support and contact phase during backward walking. Within eyes-closed conditions during backward walking, significant differences were found in percentages of single support, terminal stance, and contact phase. Moreover, the percentage of terminal swing significantly differed during backward walking with head turn conditions. Conclusion: Gait parameters such as speed, stride, and percentages of single support and contact phase were higher during backward walking than forward walking. These results indicate that backward walking involves multiple sensory systems and varying conditions.

Influence of Body Weight Support and Walking Speed in the Static Posture of Stroke Patients using Indirect PNF Treatment: A Case Report (PNF의 방산을 이용한 간접치료가 뇌졸중환자의 정적 자세에서의 체중지지 및 보행 속도에 미치는 영향 : 증례보고)

  • Lee, Byung-Ki;Yun, Jeung-Hyun
    • PNF and Movement
    • /
    • v.10 no.4
    • /
    • pp.71-76
    • /
    • 2012
  • Purpose : The purpose of this study was to examine the effects of PNF of irradiation using an indirect treatment of the stroke patient's static weight support and walking speed. Methods : Was carried out a total of nine different the PNF method of treatment for patients with left hemiplegia stroke. PNF of treatment is not in the non-paralyzed side of the trunk and upper and lower extremities by applying resistance and increased strength of the affected side. Assessment of treatment weight support both feet measured and modified using the timed up and go test were compared before and after treatment. Results : Treatment of the paralyzed side of the quadriceps and hamstring, gluteus medius muscle strength increased, and both sides of the foot body weight support improved walking speed was increased. Conclusion : Irradiation using PNF indirect treatment improves the function of the gait of stroke patients.

A New Type of a Quadruped Robot (새로운 형태의 4족 보행 로봇)

  • Sung, Young-Whee;Seo, Hyeon-Se
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.13 no.2
    • /
    • pp.113-118
    • /
    • 2012
  • Most of the existing multiped walking robots are biomimetic, i.e. they are designed to have the shapes of living things such as animals or insects. Even though those robots are familiar to us, they have some drawbacks in the view point of walking efficiency such as stability and walking speed. In this paper, we introduce a quadruped walking robot that can perform fast and stable walking by virtue of its distinctive leg positions. The proposed quadruped robot has a foreleg, a hindleg, a left leg, and a right leg. In the conventional robots, dynamic walking is needed to increase walking speed. Dynamic walking is difficult to be accomplished and is apt to be unstable. The proposed robot can move its legs in a manner that its center of gravity is always laid in the supporting polygon, so it can perform fast and stable walking without dynamic walking.

Numerical study on the walking load based on inverted-pendulum model

  • Cao, Liang;Liu, Jiepeng;Zhang, Xiaolin;Chen, Y. Frank
    • Structural Engineering and Mechanics
    • /
    • v.71 no.3
    • /
    • pp.245-255
    • /
    • 2019
  • In this paper, an inverted-pendulum model consisting of a point supported by spring limbs with roller feet is adopted to simulate human walking load. To establish the kinematic motion of first and second single and double support phases, the Lagrangian variation method was used. Given a set of model parameters, desired walking speed and initial states, the Newmark-${\beta}$ method was used to solve the above kinematic motion for studying the effects of roller radius, stiffness, impact angle, walking speed, and step length on the ground reaction force, energy transfer, and height of center of mass transfer. The numerical simulation results show that the inverted-pendulum model for walking is conservative as there is no change in total energy and the duration time of double support phase is 50-70% of total time. Based on the numerical analysis, a dynamic load factor ${\alpha}_{wi}$ is proposed for the traditional walking load model.

Improvement of Pedestrian Speed Criteria for the Pedestrian Green Interval at Silver Zone (노인보호구역 보행자녹색시간 산정을 위한 보행속도 기준 개선)

  • Han, Eum;Cho, Hyerim;Mun, Sungchul;Yun, Sung Bum;Park, Soon Yong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.4
    • /
    • pp.45-54
    • /
    • 2020
  • This study investigated basic data on walking characteristics, including walking speed and cognitive-response for the elderly, and based on these, the time of walking signal was calculated. The on-site survey examined the actual pedestrian crossing speed using a stopwatch, and the age was divided into groups of ordinary people and the elderly. Analysis of the data showed that the average walking speed for the general public was 1.29 m/s, while the average walking speed for the elderly was 1.13 m/s, higher than that of the general public. In addition, the lower speed of the 15th percentile was analyzed to 1.01 m/s for the general population and 0.85 m/s for the elderly, showing a lower walking speed than the standard for the general area and 0.8 m/s for the protected area. However, for senior citizens who use walking sticks or wheelchairs, the speed of the lower 15th-percentile is 0.73 m/s, which is lower than the current standard of protected areas, according to the analysis.

Effects of Power Walking Exercise on Fatigue, Blood Lipids, and Body Composition in Overweight Korean College Students with Taeumin Constitution (빠르게 걷기 운동이 과체중 태음인 대학생의 피로, 혈중지질 및 신체조성에 미치는 효과)

  • Shin, Eun-Ju;Kim, Nam-Cho
    • Korean Journal of Adult Nursing
    • /
    • v.20 no.4
    • /
    • pp.561-572
    • /
    • 2008
  • Purpose: To examine the effects of power walking exercise on fatigue and overweight in college students with Taeumin constitution. Methods: According to results of the constitution diagnosis (QSCC II), 58 students who were identified as Taeumin, whose BMI was over 23 were assigned to one of three groups. The power walking group walked fast at a speed of 7,000 steps per hour using a pedometer, and the walking group walked at a speed of 5,000 steps per hour. There was no treatment with control group. Each group's fatigue level, blood lipids and body composition before and after the experiment were compared and analyzed. Results: Total fatigue and total cholesterol decreased significantly in the power walking group compared to the walking group and the control group. Weight decreased significantly in the power walking group compared to the control group, and percentage of body fat decreased significantly in both the power walking group and the walking group compared to the control group. Conclusion: When power walking exercise was used with overweight Taeumin students, fatigue, blood lipid, weight and percentage of body fat decreased significantly.

  • PDF

Characteristics of Spatio-Temporal Parameters in Parkinson's Disese During Walking (보행 시 파킨슨병 환자의 시·공간적 지표의 특성)

  • Lee, Sung-Yong;Woo, Young-Keun;Shin, Seung-Sub;Jung, Seok
    • Physical Therapy Korea
    • /
    • v.15 no.3
    • /
    • pp.35-43
    • /
    • 2008
  • The purpose of this study was to compare spatio-temporal parameters during walking between patients with idiopathic Parkinson's disease and a control group matched for age, height, and weight. Thirty-three subjects were included in this study. Fifteen normal subjects (age, $63.3{\pm}5.8$ yrs; height, $164.1{\pm}8.7$ cm; weight, $60.7{\pm}17.5$ kg) and eighteen patients (age, $64.0{\pm}7.7$ yrs; height, $164.7{\pm}7.3$ cm; weight, $63.6{\pm}7.7$ kg) participated in the study. The Vicon 512 Motion analysis system was used for gait analysis in each group during walking, with and without an obstacle. The measured spatio-temporal parameters were cadence, walking speed, stride time, step time, single limb support time, double limb support time, stride length, and step length. Results in stride length and step length, when walking without an obstacle, showed a significantly greater decrease in the patient group compared to the control group. During walking with an obstacle, the patient group showed a significantly greater decrease in the step length as compared to the control group. For the control group, there were significant decreases in parameters of cadence and walking speed and increases in parameters of stride time, step time, and single limb support time when walking with an obstacle. The patient group had lower cadence and walking speed and higher stride time, step time, and single limb support time during walking with an obstacle than in walking without an obstacle. These results suggest that patients with Parkinson's disease who walk over an obstacle can decrease cadence, stride length, and step length. Further study is needed, performed with more obstacles and combined with other external cues, such as visual or acoustic guides.

  • PDF