• Title/Summary/Keyword: WALKING SPEED

Search Result 616, Processing Time 0.026 seconds

The Effects of Rhythmic Auditory Stimulation (RAS) on Hemiplegia Patient' Gait (리듬적 청각자극이 편마비환자들의 보행에 미치는 영향)

  • Kim, Tae Youn
    • Journal of Music and Human Behavior
    • /
    • v.5 no.1
    • /
    • pp.1-17
    • /
    • 2008
  • The purpose of this study is to examine how rhythmic auditory stimulation (RAS), one of music therapy techniques for neurological rehabilitation, affects the factors of hemiplegia patients' turning gait and straight gait. This study is designed to compare elimination and intervention of music therapy for 4 weeks with repeated measure plan and measure factors are classified into 21 sub-factors. The subjects of this study were 4 patients who need walking training and they were requested by physical therapist a march and a lied were used to cure them by a researcher. Each session was composed of warming up, RAS gait training, ending. The music used for RAS gait training was provided with speed which was set to patient's own gait speed measured before music therapy. The speed was provided fast gradually and each session was proceeded for 50 minutes. The results of this study showed that walking abilities increase in the segments with music therapy (B) compared to those in the segment without music therapy (A), and this supports the previous report that the application of music therapy together with other treatments has a positive effect on improvement in the patient's walking abilities. In addition, this study is meaningful in that it demonstrated that RAS music therapy is helpful to improve walking abilities not only in straight gait but also in turning gait.

  • PDF

Biomechanical Analysis for the Development of Windlass Mechanism for Trail-walking Shoe (윈들라스 메커니즘을 적용한 트레일 워킹화 개발을 위한 생체역학적 분석)

  • Park, Jong-Jin;Park, Seung-Bum
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.4
    • /
    • pp.489-498
    • /
    • 2015
  • Objective : The purpose of this study was to analyze the effects of the windlass mechanism in trail-walking shoe prototypes that can effectively support arches. A study of these effects should help with the development of a first-rate trail-walking shoe development guide for the distribution of quality information to consumers. Methods : The subjects were ten adult males who volunteered to participate in the study. Shoes from three companies, which will be referred to as Company S (Type A), Company M (Type B), and Company P (Type C), were selected for the experiment. The subjects wore these shoes and walked at a speed of 4.2 km/h, and as they tested each shoe, the contact area, maximum pressure average, and surface force were all measured. Results : Shoe Type A showed a contact area of $148.78{\pm}4.31cm^2$, Type B showed an area of $145.74{\pm}4.1cm^2$, and Type C showed an area of $143.37{\pm}4.57cm^2$ (p<.01). Shoe Type A demonstrated a maximum average pressure of $80.80{\pm}9.92kPa$, Type B an average of $85.72{\pm}11.01kPa$, and Type C an average of $89.12{\pm}10.88bkPa$ (p<.05). Shoe Type A showed a ground reaction force of $1.13{\pm}0.06%BW$, Type B a force of $1.16{\pm}0.04%BW$, and Type C a force of $1.16{\pm}0.03%BW$ (p<.05). Conclusion : The Type A trail-walking shoe, which was designed with a wide arch from the center of the forefoot to the front of the rearfoot showed excellent performance, however, more development and analysis of the windlass mechanism for a variety of arch structures is still necessary.

Biomechanical Properties of the Anterior Walker Dependent Gait of Patients with Knee Osteoarthritis (무릎관절 골관절염 환자의 보행기 보행에서 생역학적 특성)

  • Lee, In-Hee;Kwon, Gi-Hong;Park, Sang-Young
    • The Journal of Korean Physical Therapy
    • /
    • v.25 no.5
    • /
    • pp.239-245
    • /
    • 2013
  • Purpose: Osteoarthritis occurs in many different joints of the body, causing pain, stiffness, and decreased function. The knee is the most frequently affected joint of the lower limb. The aim of this study was to investigate the differences of biomechanics between independent gait and anterior walker dependent gait of patients with osteoarthritis of the knee. Methods: Lower limb joint kinematics and kinetics were evaluated in 15 patients with knee osteoarthritis when walking independently and when walking with an anterior walker. Participants were evaluated in a gait laboratory, with self-selected gait speed and natural arm swing. Results: When walking with a dependent anterior walker, participants walked significantly faster (p<0.01), using a longer stride length (p<0.01), compared to independent gait. When walking with a dependent anterior walker, participants exhibited significantly greater knee flexion/extension motion (p<0.01) and lower knee flexion moment (p<0.05) compared to independent gait. When walking with a dependent anterior walker, participants showed significantly greater peak ankle motion (p<0.01), ankle dorsiflexion/plantarflexion moments (p<0.01), and ankle power generation (p<0.05) compared to independent gait. Conclusion: These biomechanical properties of gait, observed when participants walked with a dependent anterior walker, may be a compensatory response to impaired knee function to allow sufficient power generation for propulsion. Therefore, rehabilitative strategies for patients with osteoarthritis of the knee are needed in order to improve not only knee function but also hip and ankle function.

Effect of Hip Joint Mobilization on Hip Mobility, Balance and Gait With Stroke Patients (고관절 관절가동기법이 뇌졸중 환자의 고관절 가동성, 균형과 보행능력에 미치는 효과)

  • Kim, Young-Hoon;Jang, Hyun-Jeong;Kim, Suhn-Yeop
    • Physical Therapy Korea
    • /
    • v.21 no.2
    • /
    • pp.8-17
    • /
    • 2014
  • The purpose of this study was to examine the effects of hip joint mobilization (HJM) on walking ability, balance ability, and the joint range of motion in stroke patients to minimize the problems of the musculoskeletal system in patients with central nervous system diseases. All volunteers were randomly assigned to the HJM group ($n_1=14$) and the general neurodevelopment therapy (NDT) group ($n_2=16$). The HJM procedure involved applying Maitland mobilization techniques (distraction, lateral gliding, inferior gliding, and anterior gliding) by grade 3 to both hip joint. The mobilization process included mobilization and NDT for 15 min/day, 3 days a week for 4 weeks. The outcome measures were evaluated, including the hip joint passive range of motion (ROM) test and femur head anterior glide test (FHAG) using prone figure four test, dynamic and static balance abilities [timed up and go (TUG) test and center of pressure (COP) analysis], and walking ability [10-meter walking test (10MWT) and 6-min walking test (6MWT)]. Both the groups showed significant post-training differences in the hip joint ROM (FHAG and degree of hip extension) and 10MWT. The post-training improvements in the TUG test were significantly greater in patients of the HJM group than in the NDT group; however, there were no post-training improvements in COP in both groups. Patients in the HJM group showed post-training improvement in the 6MWT; however, statistically significant differences were not observed. Patients in the NDT group showed post-training improvements in the 6MWT. These results suggest that HJM improves hip joint ROM, dynamic balance ability, and walking speed in stroke patients. However, further studies are required to evaluate the long-term therapeutic efficacy of HJM in stroke patients.

The Effects of Handrails during Treadmill Gait Training in Stroke Patients (뇌졸중 환자의 트레드밀 훈련 시 손잡이 유무 및 위치가 보행 및 균형에 미치는 영향)

  • Nam, Seok-Hyun;Kang, Kyung-Woo;Kwon, Jung-Won;Choi, Yong-Won;Kim, Chung-Sun
    • The Journal of Korean Physical Therapy
    • /
    • v.25 no.1
    • /
    • pp.23-28
    • /
    • 2013
  • Purpose: The purpose of this study was to examine the influence of a handrail (presence and position) on treadmill gait and balance in stroke patients during gait training. Methods: 39 patients with stroke (male 31, female 8) participated in this study. The training groups were classified into a no-handrail group (NHG), front handrail group (FHG), and bilateral handrail group (BHG). Each group comprised 13 subjects. The subjects were trained to walk in a straight path 30 minutes per day for 8 weeks. The Good Balance System was used to measure static balance and dynamic balance. To measure walking ability, timed up and go (TUG) was also assessed. Results: The NHG showed no significant differences in static balance, dynamic balance, and TUG. The FHG was significantly different in their medial-lateral speed of static balance, dynamic balance, and TUG. The BHG was significantly different in their static balance, dynamic balance, and TUG. Conclusion: These findings consider the effects of holding handrails concomitantly with changes in postural stability. We conclude that for training stroke patients, treadmill walking while holding handrails improves balance and gait more than treadmill walking without holding handrails. The resulting changes in muscle activity patterns may facilitate the transfer to a gait pattern. The results of this study suggest methods for training treadmill walking in stroke patients.

Design and Optimization of an Knee Joint of Fully-active Transfemoral Prosthesis for Stair Walking (계단 보행을 위한 능동형 대퇴의지 무릎 관절의 설계 및 최적화)

  • Ahn, Hyoung-Jong;Lee, Kwang-Hee;Hong, Yi;Lee, Chul-Hee
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.10 no.1
    • /
    • pp.65-72
    • /
    • 2016
  • In this study, a fully active transfemoral prothesis with a knee joint is designed considering stair walking conditions. Since the torque at the knee joint required for stair walking condition is relative high compared with the one in normal walking condition, the proposed design has high torque generating mechanism. Moreover, the transfemoral prothesis is designed in compact size to reduce its weight, which is related to comfortable fit and fatigue of patients. Flat type BLDC motor is used for simple and compact structure and various components are used to generate required torque with target working angle and speed. The weight reduction of structure is carried out using optimization method after the initial design process is complete. The optimization is conducted under the load conditions of stair walking. The optimized design is validated via finite element analysis and experiments. As a result, the weight is reduced using topology and shape optimization but maintaining the safety of structure. Also the space efficiency is improved due to its compact size.

Effect of Underwater Treadmill on the Elderly's Walking and Balance Ability (수중 트레드밀 운동이 노인의 보행 및 균형능력에 미치는 영향)

  • Ahn, Myung-Hwan;Kim, Jung-Hun;Oh, Seung-Jun
    • Journal of Korean Physical Therapy Science
    • /
    • v.16 no.4
    • /
    • pp.67-74
    • /
    • 2009
  • Background: This study had been carried out with 20 elderly subjects as its object for about one month from November 3, 2008 to December 14, 2008 in order to observe the effect of Underwater Treadmill on the elderly's walking and balance ability. Methods: Subjects were assigned either experimental group (n=10) or the control group (n=10), experimental group received Underwater Treadmill program (30 min per course, 3days a week for 6weeks). Subjects were assessed for muscle power (Nicolas Manual Muscle Test), balance (Functional Reach Test), gait ability (Time Up and Go, 10M walking test) before experiments and after experiments. Results: The results of this study were as follows; 1. After underwater treadmill exercise, the change of isometric contraction indicated a beneficial increase on lower extremity muscle power of experimental group and functional test of balance function; FRT, TUG indicated beneficial difference between groups. 2. beneficial difference between groups in walking speed of hourly index change of walking function. 3. between muscle power and balance, gait ability, we could find out there's high correlation ship between lower extremity muscle power increasing and balance and gait ability of the elderly. Conclusion: Aerobic exercise using underwater treadmill effects on muscle power strengthening of the elderly, and because of this, increase of lower extremity muscle power is very helpful not only to improvement of balance ability, but also to improvement of gait ability, so it will be used as a physical therapy program on clinic and used as an exercise program for protecting the elderly from falling down very well.

  • PDF

Actual Situation Analysis of Walking Environment in Chongqing, China - Case Studies of First Experimental Elementary School and Zaozilanya Elementary School -

  • Hong, Shi;Suh, JooHwan
    • Journal of recreation and landscape
    • /
    • v.12 no.4
    • /
    • pp.1-10
    • /
    • 2018
  • This study is about the investigation of the walking environment of the First Experimental Elementary School in Shapingba District of Chongqing City and the Zaozilanya Elementary School in Yuzhong District and the analysis of the pedestrian's consciousness. The improvement plan is obtained by comparing and analyzing the walking environment around the school. The survey results are as follows. According to the survey results of the walking environment around the school, the sidewalks of the two schools are relatively narrow, and there are more pedestrians crossing the road. There is a phenomenon of parking in both schools. The phenomenon of parking in Zaozilanya Elementary School is even more serious. In investigating the most important elements of the school's pedestrian environment, the setting of the signpost, the setting of the crosswalk and signal lights, the setting of the fence, the setting of the vehicle's deceleration facilities, and the control of the school gate are all necessary. Therefore, in order to create a safe and comfortable improvement plan for the surrounding environment of the school, first of all, in the improvement of the facilities around the school, the setting of the fence, the setting of the speed bump, the improvement of the crosswalk and the signal light. Second, in terms of restrictions, the scope of protection around the school needs to be expanded, and restrictions on parking and restrictions on vehicle traffic need to be implemented. Third, in terms of education and publicity, it is not only necessary to provide safety guidance for students to go to school, but also to provide drivers with driving safety education and publicity.

The Effect of a Stepwise PNF Pattern Therapy in Weight-Bearing Positions on the Balance and Walking Functions of a Patient with Subacute Stroke -A Single Case Study- (아급성기 뇌졸중 환자의 균형 및 보행 기능에 대한 체중지지 자세에서의 단계적 PNF 패턴 치료의 효과 - 단일사례연구 -)

  • Kim, Dong-Kyu;Lee, Soon-Hyun;Oh, Duck-Won
    • PNF and Movement
    • /
    • v.16 no.3
    • /
    • pp.307-315
    • /
    • 2018
  • Purpose: The purpose of this study was to demonstrate the effects of a stepwise proprioceptive neuromuscular facilitation (PNF) pattern therapy in weightbearing positions on the balance and walking functions of a patient with subacute stroke. Methods: The patient was a 78-year-old man with right post-stroke hemiparesis who had decreased balance and gait function. During the baseline and withdrawal phases, no intervention was applied; however, in the intervention phase, the patient received a stepwise PNF pattern therapy in weight-bearing positions. Results: During the intervention phase, the LOS improved by 296.51% (from $2482.13mm^2$ to $626mm^2$), and walking speed improved by 18.70% (from 0.75 m/s to 0.64 m/s). The LOS and 10MWT values appeared to be clinically significantly improved after the intervention. In addition, the scores of the BBS and ABC scales improved by 100% (from 36 points to 18 points) and 56.52% (from 720 points to 460 points), respectively. Conclusion: These findings suggest that a stepwise PNF pattern therapy may be helpful in enhancing the balance and walking function of a patient with subacute stroke. Further studies are required to validate the results of this study.

Effects of Weight-Bearing Training with Elastic Bands on less - Affected Side during Functional Electronic Stimulation on Walking and Balance in Stroke Patients (기능적 전기자극시 비 마비측에 탄력밴드를 적용한 체중지지훈련이 뇌졸중 환자의 보행과 균형에 미치는 영향)

  • Jeong, Chae-min;Woo, Young-Keun;Won, Jong-im;Kim, Su-Jin
    • PNF and Movement
    • /
    • v.20 no.3
    • /
    • pp.417-430
    • /
    • 2022
  • Purpose: The purpose of this study was to examine the effect of weight-bearing training with an elastic band during functional electrical stimulation (FES) on walking and balance functions in stroke patients. Methods: Twenty patients with chronic stroke were divided into an experimental group assigned to weight-bearing training with an elastic band during functional electrical stimulation (FES; n=10) and a control group assigned to weight-bearing training alone during FES (n=10). The patients in both groups attended physical therapy sessions five times a week for four consecutive weeks. The experimental group underwent weight-bearing training with an elastic band during FES five times a week for four weeks. The control group underwent weight-bearing training during FES. Balance parameters were measured before and after the intervention using the Balancia program. Moreover, all patients were evaluated using the Berg Balance Scale (BBS), the Time Up and Go Test (TUGT), and the Wisconsin Gait Scale (WGS) before and after each intervention. Results: The results showed that weight-bearing training with elastic bands during FES and weight-bearing training during FES had a significant effect on the affected side's weight-bearing ratio, BBS, TUGT, and WGS in both groups (p <0.05). Additionally, the results showed that the changes observed in the two groups indicate significant differences in path length, average speed, BBS score, TUGT time, and WGS score between the groups (p < 0.05). Conclusion: In patients with stroke, weight-bearing training with an elastic band during FES affected on walking and balance. Therefore, it is an optional intervention for the balance and walking ability of stroke patients.