• 제목/요약/키워드: W-Mo mineralization

검색결과 28건 처리시간 0.029초

우석광상 다금속 광화작용의 시공간적 특성변화 (Spatio-Temporal Variation of Polymetallic Mineralization in the Wooseok Deposit)

  • 임헌경;신동복;정준영;이문택
    • 자원환경지질
    • /
    • 제51권6호
    • /
    • pp.493-507
    • /
    • 2018
  • 제천시 청풍면에 위치한 우석광상은 옥천변성대 동북부 황강리광화대에 속한다. 지질은 조선누층군의 석회암이 넓게 분포하며, 광상 동측에 백악기 무암사화강암이 관입하였다. 광상은 스카른 및 맥상광체가 W-Mo-Fe 및 Cu-Pb-Zn 광화작용을 수반하며, 스카른은 하부갱에서만 발달한다. 광석광물은 스카른광물을 교대 및 절단하며, 자철석-적철석, 휘수연석-회중석-철망간중석, 자류철석-황동석-황철석-섬아연석-방연석 순으로 정출되었고 전반적으로 황화광물이 우세하다. 석류석의 조성은 $Ad_{65.9-97.8}Gr_{0.3-32.0}Pyr_{0.9-3.0}$으로 Fe가 부화된 안드라다이트 계열을 보이며, 휘석은 $Hd_{4.5-49.7}Di_{42.3-93.9}Jo_{0.5-7.9}$로서 투휘석 계열이 우세하여 스카른화 작용이 전체적으로 산화환경에서 진행되었음을 지시한다. 맥상광체에 수반된 섬아연석에 대한 FeS-MnS-CdS 삼각도에서 심부에서 천부로 가면서 FeS는 감소하고 MnS는 증가하는 경향을 보이는데 이는 심부의 W 광화작용과 천부의 Pb-Zn 광화작용과 관련된 것으로 보인다. 황화광물의 황안정동위원소 조성은 5.1-6.8 ‰로 마그마에서 기원된 황이 모암이 영향을 받은 것으로 여겨진다. 우석광상의 W-Mo 스카른 및 Pb-Zn 열수맥상 광화작용은 시공간적으로 심부에서 천부로 가면서 온도 및 산소분압의 감소와 함께 황분압이 증가하면서 진행된 것으로 보인다.

태백산광화대내의 원동 다금속광상의 성인 (Ore Genesis of the Wondong Polymetallic Mineral Deposits in the Taebaegsan Metallogenic Province)

  • 황덕환;이재영
    • 자원환경지질
    • /
    • 제31권5호
    • /
    • pp.375-388
    • /
    • 1998
  • The purpose of this study is to investigate the ore genesis and occurrence of the Wondong polymetallic mineral deposits. The Pb-Zn, Fe and W-Mo mineralizations are found in skarn zones which formed mainly in or along the fault shear zones with the $N25-40^{\circ}W$ and $N10-50^{\circ}E$ directions, whereas the Cu-Mo mineralization is appeared hydrothermal replacement zone. The skarn minerals consist mainly of garnet and epidote, which were the last alteration phases between pneumatolytic and hydrothermal stages. The mineral paragenesis toward the late stage are as follows: arsenopyrite, scheelite, magnetite, pyrite, pyrrhotite, sphalerite, galena, chalcopyrite and molybdenite. Average ore grades are 0.33 g/t Au, 46.29 g/t Ag, 0.06% Cu, 4.4% Pb, 2.61% Zn and 29.39% Fe in tunnels, and 0.31 % Cu, 0.52% Pb, 6.29% Zn, 29.29% Fe, 0.03% Mo and 0.12% $WO_3$ in drill cores. Fluid inclusion data shows that Type I (liquid-rich), Type II (vapor-rich) and Type III (halite-bearing) inclusions are coexisted and their homogenization temperatures are quite similar. This indicates that boiling conditions have been reached during the mineralization. It is also likely that the ore solutions were evolved through the mixing between magmatic and meteoric waters. Rhyolite and quartz porphyry far the mineralization probably are not responsible of the Wondong polymetallic mineral deposits.

  • PDF

중국의 중석광상을 근거로한 중석광상 성인 총론 (General Remarks of Geneses of Tungsten Ore Deposits Based on Tungsten Deposits of China)

  • 문건주
    • 자원환경지질
    • /
    • 제28권3호
    • /
    • pp.287-303
    • /
    • 1995
  • Tungsten ore deposits in China show clearly their relationship between granitoids and orebodies. All kinds of different tungsten ore deposits, having the largest ore reserves in the world, occur in China. Major tungsten deposits in 1950'years were locally confined in three provinces such as Jiangxi, Hunan and Guangdong. However, the major tungsten ore deposits are replaced by new tungsten deposits such as Sandahozhuang, Xingluokeng, Shizhuan and Daminghsan deposit which may be larger than the previous major deposits. Tungsten ore deposits of China exhibit obviously the granitoid was the ore-bringer to form tungsten ore deposits. The wolframite-bearing quarz veins in China indicate that tungsten mineralization took place by crystallization of wolframite preferentially unless $Ca^{{+}{+}}$ was introduced from outside into the magma-origin-fluid, since it is understood that the scheelite in the Sangdong ore deposit was preferentially precipitated, because of chemical affinity, from the tungsten fluid in which Fe and Ca ions were as sufficient as to form magnetite, wolframite and scheelite. Tungsten deposits in the world are divided into two systems; W-Mo-Sn system and W-Mo system. Most of tungsten deposits in China dated to about 196-116 Ma belong to the W-Mo-Sn system, while late Cretaceous tungsten deposits such as the Sangdong deposit in Korea belongs to the W-Mo system. The genetic order of tin-tungsten-molybdenum mineralization observed in the Moping tungsten mine in China and the Sangdong in Korea may be attributed to volatile pressures in the same magma chamber. It is assumed from ages of tungsten mineralizations that ore elements such as tin, tungsten and molybdenum might be generated periodically by nuclear fission and fusion in a part of the mantle and the element generated was introduced into the magma chamber. The periodical generation of elements had determined association, depletion and enrichment of tin and molybdenum in tungsten mineralization and it results in little association of cassiterite in tungsten deposit of late Cretaceous ages. Different mechanism of emplacement of the ore-bearing magma has brought various genetic types of tungsten deposits as shown in China and the world.

  • PDF

옥천대(沃川帶)의 지질(地質) 및 광물자원(鑛物資源)에 관(關)한 연구(硏究) -무암사화강암(務岩寺花崗岩) 주위에서의 광화작용(鑛化作用)에 관(關)하여- (Studies on Geology and Mineral Resources of the Okcheon Belts -Mineralization in the Vicinity of the Muamsa Granite Stock-)

  • 윤석규;김규한;우종상
    • 자원환경지질
    • /
    • 제19권spc호
    • /
    • pp.3-17
    • /
    • 1986
  • Hundred mineral deposits including W-Mo, Pb-Zn-Cu, fluorite and talc occur in the Cambre-Ordovician limestone contacting with the Cretaceous Muamsa and Wolak granitoids in the Susanri-Hwanggangri mineralized zone. In most mineral deposits characterized by metasomatic replacement, skarn and hydrothermal vein types, two distinct tendencies were found as W-Mo mineralization in or/and near granitoid batholith and ($Pb-Zn-Cu(CaF_2)$) mineralization which is gradually increased toward the batholith. W-Mo veins of extensive vein system occupy northly striking fractures whilst $Pb-Zn-Cu-CaF_2$ veins strike northeast or northwest. In this work, three representative lead-zinc-copper deposits choosing the Dangdu, Useog and Eoksu mines were dealt with in detail. Skarn ore bodies in the Dangdu mine were grouped into early diopside rich clinopyoxene-garnet, barren skarn and ore bearing late hedenbergite rich clinopyroxene-garnet skarn. Temperature and $X_{CO_2}$, obtained from hedenbergite-andradite-calcite-quartz mineral equilibria in the Dangdu ore deposits were $580{\sim}650^{\circ}C$ and 0.15~0.3, respectively. Fluid inclusien evidence in the Useog mine indicates that main stage mineralization temperature ranges from 224 to $389^{\circ}C$ with a salinity of 2~17 equivalent wt. percent NaCl. Sphalerites from the Dangdu and Useog mines have 16~17.7 mole percent in FeS which is relatively consistent to those of some other lend-zinc ore deposits in South Korea. Filling tcmjCerature of fluid inclusion frem the Eoksu mine shows deposition of ore within the temperature ranges from 237 to $347^{\circ}C$ and within the salinity ranges from 2.6 to 10.77 equivalent wt. percent NaCl.

  • PDF

The Sannae-Eonyang Granitic Rocks and Hydrothermal System, Southeastern Kyongsang Basin

  • Yang, Kyoung-Hee;Lee, Joon-Dong
    • 자원환경지질
    • /
    • 제33권1호
    • /
    • pp.19-30
    • /
    • 2000
  • The Sannae-Eonyang granitic rocks are a large fossil hydrothermal system containing the Sannae Mo-W fissure-vein type and the Eonyang amethyst deposits in the southeastern Kyongsang Basin. They evolved through similar stages showing the similarities in chemical and mineralogical compositions, fractionation trends and early magmatic fluids. Major, trace and rare earth element(REE) variations can be accounted for fractional crystallization combined with variable degrees of metasomatism. Based on the aqueous fluids exsolved directly from the crystallizing melt, the Sannae-Eonyang granitic rocks were emplaced at similar depth or pressure conditions. High temperature fluid interaction with the granitic rocks affects the elements such as K, Na, Rb, Ba, Sr, Eu, and heavy REE (HREE) mostly through feldspar re-equilibration. Although hydrothermal fluids produced partly positive Eu anomalies and HREE depletion in the granitic rocks at the Sannae Mo-W mine, the chemical concentrations defining fractionnation trends have survived the effects of alteration. Aqueous fluids exsolved from the crystallizing melt appears to be widespread, whereas fluids of moderate to low salinity and low-density with relatively high homogenization temperatures and $Co_2$-rich fluids appear to be mainly restricted and responsible for Mo-W and amethyst mineralization, respectively. Hydrothermal system of the Sannae-Eonyang granitic rocks represents repeated fluid events; from exsolution of aqueous fluids from the crystallizing melt, through fluid immiscibility and meteoric convection to later mineralization.

  • PDF

몽골 중부 둘란하이한 지역의 W-Mo 부존 특성 (Characteristics of W-Mo Mineralization in Dulaankhaikhan area, Mongolia)

  • 이범한;김인준;허철호
    • 광물과산업
    • /
    • 제26권
    • /
    • pp.22-31
    • /
    • 2013
  • 한국지질자원연구원과 몽골 광물자원청은 몽골 항가이 희유금속 광화대 내 둘란하이한 W-Mo 산출지에 대해 공동조사를 하였다. 몽골 항가이 희유금속 광화대 둘란하이한 W-Mo 산출지에 대한 지질광상 조사결과 텅스텐 함량이 높은 광화점들을 발견하였고 텅스텐 광석 광물은 철망간중석, 철중석, 망간중석으로 분석되었다. 실루리아기 호톤트 층의 규암에서 채취한 시료의 텅스텐($WO_3$) 함량이 0.11-4.43%로 분석되었고, 페름기 델거한 복합체의 페그마타이트에서 채취한 시료의 텅스텐 함량이 137-3844ppm으로 분석되었다. 조사지역에서 채취한 시료들의 전체 $R_2O_3$의 평균값은 473ppm으로 지각의 평균 함량인 200ppm에 비해 약 2.5 배 정도 되는 값을 가지며 가장 높은 시료는 1326ppm으로 약 6.5 배 정도 되는 값을 갖는 것으로 분석되었다. 요인분석 결과에 따르면 둘란하이한 지역 내 텅스텐 함량이 높은 두 지역의 광화 작용은 상관관계의 유사성을 보이며 따라서 유사한 기원을 갖는 것으로 판단된다.

  • PDF

경상분지 남동부의 산내화강암과 산내 W-MO 광상에 관한 유체포유물 연구 (A Fluid inclusion study of the Sannae granite and the associated Sannae W-Mo deposit, Southeastern Kyongsang Basin)

  • 양경희;이준동
    • 암석학회지
    • /
    • 제8권1호
    • /
    • pp.46-55
    • /
    • 1999
  • Fluid inclusions in granite and hydrothermal quartz indicate that three fluids have affected the Sannae granite. The earliest fluid is represented by three-phase aqueous fluid inclusions with high salinity (38 to 46 wt.% NaCl equiv.). It was exsolves from a crystallizing melt and trapped at a relatively high-pressure condition. The secong fluid is represented by two-phase aqueous fluid inclusion with low entectic temperatures (< $-40^{\circ}C$). low- to moderate salinity (3 to 24.0 wt.% NaCl equiv.) and high homogenization temperatures$ ($309^{\circ}C$$473^{\circ}C$)($. This fluid was trapped at higher pressures than 300-500 bars and precipitated molybdenite and wolframite in quartz veins. It was probably generted by fluid-host rock interactions since they show a wide range of salinity within a narrow range of homogenization temperatures. The final fluid is represented by an aquenous fluid boiling that separated into high-salinity (34-38 wt.% NaCl equiv.) and low-salinity fluid (0 to 8.7 wt.%) at $303-376^{\circ}C$ and 50-150 bars. These boiling fluids precipitated euhedral quartz in miarolitic cavities. The compositions of the final fluid was rather complex in the $H_2$O-NaCl-KCI-$FeCl_2$ system. The Sannae granite was a locus for repeated fluid events including magmatic fluids during the final stage of crystallization, the convection of hydrothermal fluids causing a fluid ascending, fluid boiling, and the local W-Mo mineralization and formation of miarolitic cavities due to thermal, tectonic and compositional properties of the felsic granite.

  • PDF

대화(大華) 및 돈산(敦山) 중석(重石)·모리브덴 광상(鑛床)의 유체포유물(流體包有物) (Fluid Inclusions of Daehwa and Donsan Tungsten-Molybdenum Deposits)

  • 박희인;최석원;김덕래
    • 자원환경지질
    • /
    • 제18권3호
    • /
    • pp.225-237
    • /
    • 1985
  • Mineralization of Daehwa and Donsan W-Mo deposits can be devided into three distinct depositional stages on the basis of mineral paragenesis and flnid inclusion studies; stage I, deposition of oxides and silicates ; stage II, deposition of base-metal sulfides and sulfosalts with carbonates; stage III, deposition of barren calcite and fluorite. Tungsten, molybdenum and tin mineralization occurred in stage I. Fluid inclusion studies reveal that ore fluid of stage I were homogeneous $H_2O-CO_2$ fluids containing 3.5~14.6 mol % $CO_2$. Minimum temperature and pressure of stage I ore fluids were $240^{\circ}C$ and 500 bars respectively. Salinities of aqueous type I inclusions in minerals of stage I range from 3.7 to 7.6 wt. % equi. NaCl. whereas those of $CO_2$-containing type III inclusions range from 0.3 to 4.4 wt. %. Temperatures of stage II ore fluids range from 200 to $305^{\circ}C$ on the whole and salinities were in the range of 3.2~7.2 wt. %. Homogenization temperatures of fluid inclusions in calcite and fluorite of stage III range from 114 to $186^{\circ}C$ and salinities were in the range of 0.9~4.3 wt. %. Sulfur fugacities during stage II deduced from mineral assemblages and tamperature data from fluid inclusions declined from earlier to later in the range of $10^{-11}{\sim}10^{-18}atm$. Fluid inclusion evidences suggest that the dominance of $CO_2$ in ore fluid during W-Mo mineralization is the characteristic features of Cretaceous W-Mo deposits of central district of Korea compared to those of Kyeongsang basin district.

  • PDF

APPLICATION OF SIR-C DATA FOR EXPLORATION OF MINERALIZEDD ZONES (HWANGGANG-Rl, KOREA)

  • Jiang, Wei W.;Park, S.W.;Park, Jeong-Ho;Lee, Cahng-Won;Kim, Duk-Jin;So, Byung-Han;So, C. S.;Moon, Wooil M.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 1999년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.158-164
    • /
    • 1999
  • This paper investigated and evaluated the NASA's Shuttle Imaging Radar-C (SIR-C) multiple frequency SAR data for differential backscattering effects of microwave from the surface geological materials overlying the skarn type mineralization. Although an integrated approach in mineral exploration is more cost effective and is well in use, there are still many technical and scientific issues to be further investigated and researched. In this study we have reprocessed several sets of previously surveyed exploration data and experimented with fuzzy logic digital fusion of the preprocessed data with respect to chosen exploration targets. Among the numerous fuzzy logic operators, which are currently available for a data driven integrated exploration strategy, we used varying combinations of fuzzy MIN, fuzzy MAX, and fuzzy SUM operators along with Gamma operator for fusion of exploration data, including the contact metamorphic zone information. The final exploration target tested was a skarn type W-Mo-F mineralization in the study area. The fuzzy logic derived mineral potential anomaly almost exactly matched the differential backscattering anomalies on the C-band and L-band SIR_C data when overlaid on each other. Although this high degree of correlation between these two data sets is remarkable, the differential backscattering anomaly over the skarn type W-Mo-F mineralization in the study area requires further investigation.

  • PDF

자력자료를 이용한 몽골 바얀온줄 텅스텐-몰리브덴 광화대 특성 연구 (A Study on the Characteristics of W-Mo Ore Deposit in Bayan-Onjuul, Mongolia Using Magnetic Data)

  • 박계순;이범한;김인준;허철호
    • 지구물리와물리탐사
    • /
    • 제17권4호
    • /
    • pp.202-208
    • /
    • 2014
  • 한국지질자원연구원은 몽골 광물자원청과 공동으로 몽골 항가이 희유금속 광화대내 바얀온줄 지역의 W-Mo (텅스텐-몰리브덴) 광화대 지질조사를 수행하였으며, 이의 일환으로 육상 자력 탐사를 수행하였다. W-Mo 산출지들은 주변보다 높은 자기감수율 값을 갖는 화강암의 북쪽 경계를 따라 일정 거리를 두고 나타나고 있다. 또한 자력 역산을 통해 구축된 3차원 영상화 결과를 보면 화강암체가 심부 중심에서 지표 W-Mo 산출지 쪽으로 자기감수율 값이 감소하며 연장되고 있는 것으로 해석된다. 이는 W 광화작용에 관여하는 광화용액의 일반적인 특성과 잘 부합되는 결과로 자력탐사 자료를 통한 타당성 높은 광화대 특성 분석 결과로 판단된다. 지표 광체 산출지와 유사한 공간적 상관성을 갖는 지역에 대한 정밀 조사를 통해 잠두광체를 확보하고 경제성을 높이는 추가 연구가 필요할 것이다.