• 제목/요약/키워드: W-E-F nexus

검색결과 2건 처리시간 0.021초

A development of system dynamics model for water, energy, and food nexus (W-E-F nexus)

  • Wicaksono, Albert;Jeong, Gimoon;Kang, Doosun
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.220-220
    • /
    • 2015
  • Water, energy, and food security already became a risk that threatens people around the world. Increasing of resources demand, rapid urbanization, decreasing of natural resources and climate change are four major problems inducing resources' scarcity. Indeed, water, energy, and food are interconnected each other thus cannot be analyzed separately. That is, for simple example, energy needs water as source for hydropower plant, water needs energy for distribution, and food needs water and energy for production, which is defined as W-E-F nexus. Due to their complicated linkage, it needs a computer model to simulate and analyze the nexus. Development of a computer simulation model using system dynamics approach makes this linkage possible to be visualized and quantified. System dynamics can be defined as an approach to learn the feedback connections of all elements in a complex system, which mean, every element's interaction is simulated simultaneously. Present W-E-F nexus models do not calculate and simulate the element's interaction simultaneously. Existing models only calculate the amount of water and energy resources that needed to provide food, water, or energy without any interaction from the product to resources. The new proposed model tries to cope these lacks by adding the interactions, climate change effect, and government policy to optimize the best options to maintain the resources sustainability. On this first phase of development, the model is developed only to learn and analyze the interaction between elements based on scenario of fulfilling the increasing of resources demand, due to population growth. The model is developed using the Vensim, well-known system dynamics model software. The results are amount of total water, energy, and food demand and production for a certain time period and it is evaluated to determine the sustainability of resources.

  • PDF

Multi-Regional Resources Management Practice using Water-Energy-Food Nexus Simulation Model

  • Wicaksono, Albert;Jeong, Gimoon;Kang, Doosun
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.163-163
    • /
    • 2019
  • The rapidly growing global population increases the awareness of water, energy, and food security worldwide. The concept of Water, Energy, and Food nexus (hereafter, WEF nexus) has been widely introduced as a new resources management concept that integrate the water, energy, and food in a single management framework. Recently, WEF nexus analyzes not only the interconnections among the resources, but also considers the external factors (such as environment, climate change, policy, finance, etc) to enhance the resources sustainability by proper understanding of their relations. A nation-level resources management is quite complex task since multiple regions (e.g., watersheds, cities, and counties) with different characteristics are spatially interconnected and transfer the resources each other. This study proposes a multiple region WEF nexus simulation and transfer model. The model is equipped with three simulation modules, such as local nexus simulation module, regional resources transfer module, and optimal investment planning module. The model intends to determine an optimal capital investment plan (CIP), such as build-up of power plants, water/waste water treatment plants, farmland development and to determine W-E-F import/export decisions among areas. The objective is to maximize overall resources sustainability while minimize financial cost. For demonstration, the proposed model is applied to a semi-hypothetical study area with three different characterized cities. It is expected the model can be used as a decision support tool for a long-term resources management planning process.

  • PDF