• Title/Summary/Keyword: W-Cu pseudo-alloy

Search Result 2, Processing Time 0.022 seconds

Enhancement of Microstructural Homogeneity of W-Cu Pseudo-alloy by Adding W-Cu Composite Powder in Infiltration Process

  • Hong, Moon-Hee;Choi, Jae-Ho;Lee, Seong;Kim, Eun-Pyo;Noh, Joon-Woong;Lee, Sung-Ho;Kim, Young-Moo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.948-949
    • /
    • 2006
  • An infiltration technique using W-Cu composite powder has been developed to enhance microstructural uniformity of W-Cu pseudo-alloy. W-Cu composite powder, manufactured by reduction from $WO_3$ and CuO powder mixtures, were blended with W powder and then cold iso-statically pressed into a cylindrical bar under 150 MPa. The pressed samples were pre-sintered at $1300^{\circ}C$ for 1 hour under hydrogen to make a skeleton structure. This skeleton structure was more homogeneous than that formed by using W and Cu powder mixtures. The skeleton structures were infiltrated with Cu under hydrogen atmosphere. The infiltrated W-Cu pseudo-alloy showed homogeneous microstructure without Cu rich region

  • PDF

A new Aqueous Injection Molding Method of Fabricating W-Cu Pseudo-alloy Part (수계 바인더를 이용한 W-Cu 합금의 새로운 사출성형법 연구)

  • Lee Jeong-Keun
    • Journal of Powder Materials
    • /
    • v.13 no.1 s.54
    • /
    • pp.57-61
    • /
    • 2006
  • The present work illustrates the use of water-soluble cupric salts as ingredients of binder for injection molding of $W-10 wt\%$ Cu. Parts produced are dense, homogeneous and have good surface finish, compared to those produced using conventional binder system. This new binder system provides also process-simplification benefit. $CuCl_2\;and\;Cu(NO_3)_2$ with the purity of $98\%$ was selected for this study. Rapid sintering process involving thermal decomposing was successful in densification for 1h. Final density that is about $93\%$ of theoretical value could be obtained, and are distinguishable from conventionally processed W-Cu composites.