• Title/Summary/Keyword: Voyage Data Recorder

Search Result 14, Processing Time 0.02 seconds

Study of Small and Medium-Sized VDR Device with Camera and Data Control Method for Efficiency Garantee of Ship Navigation System (선박 네비게이션 시스템의 효율성 보장을 위한 카메라 장착 중소형 VDR장치 및 데이터 제어방법 연구)

  • Min, Byung Guk;Ha, Tae Jin;Kim, Young Soo;Park, Jung Min;Cha, Jun Sub
    • Smart Media Journal
    • /
    • v.2 no.1
    • /
    • pp.42-47
    • /
    • 2013
  • The paper presents VDR system for efficiency of ocean navigation device and how to output and to save data using this system as well as compressed digital data and analog video output from the camera are utilized at the same time. The compressed digital data is used to store video for VDR device while analog video is used to display on screen in real-time so that VDR system saves the load on SD memory card without navigation terminal and output it with real-time video. Also, the control method using VDR system are proposed for saving and outputting data.

  • PDF

Tracking of ARPA Radar Signals Based on UK-PDAF and Fusion with AIS Data

  • Chan Woo Han;Sung Wook Lee;Eun Seok Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.38-48
    • /
    • 2023
  • To maintain the existing systems of ships and introduce autonomous operation technology, it is necessary to improve situational awareness through the sensor fusion of the automatic identification system (AIS) and automatic radar plotting aid (ARPA), which are installed sensors. This study proposes an algorithm for determining whether AIS and ARPA signals are sent to the same ship in real time. To minimize the number of errors caused by the time series and abnormal phenomena of heterogeneous signals, a tracking method based on the combination of the unscented Kalman filter and probabilistic data association filter is performed on ARPA radar signals, and a position prediction method is applied to AIS signals. Especially, the proposed algorithm determines whether the signal is for the same vessel by comparing motion-related components among data of heterogeneous signals to which the corresponding method is applied. Finally, a measurement test is conducted on a training ship. In this process, the proposed algorithm is validated using the AIS and ARPA signal data received by the voyage data recorder for the same ship. In addition, the proposed algorithm is verified by comparing the test results with those obtained from raw data. Therefore, it is recommended to use a sensor fusion algorithm that considers the characteristics of sensors to improve the situational awareness accuracy of existing ship systems.

A Study of Demonstration Procedure for Onboard Ship Equipment (선내 장비 실선시험을 위한 절차연구)

  • Hyoseung Kim;Geonhong Kim;Seojeong Lee
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.218-219
    • /
    • 2022
  • The Korea Institute for Advancement of Technology and the Ulsan ICT Promotion Agency are building an electric smart ship using a full range of ICT with advanced technology, and are expected to demonstrate it in 2022. For the demonstration of onboard ship equipment, it needs to develop a demonstration procedure. There are 4 types of onboard equipment preferentially selected for the development of the demonstration test procedure which are an electronic chart display and information system, a ship RADAR system, a voyage data recorder, and a ship energy efficiency monitoring system. This paper describes the demonstration procedure based on the equipment standard for the electronic chart display and information system among 4 selected types of demonstration equipment, and also the verification test checklist and template is introduced.

  • PDF

A Study on the Wireless Ship Motion Measurement System Using AHRS (AHRS를 이용한 무선 선체 운동 측정 시스템에 관한 연구)

  • Kim, Dae-Hae;Lee, Sang-Min;Kong, Gil-Young
    • Journal of Navigation and Port Research
    • /
    • v.37 no.6
    • /
    • pp.575-580
    • /
    • 2013
  • The IMU(Inertial Measurement Unit) which is the expensive equipment has been used as a special limited area, usually in measurement of posture of applying to the areas of ship, submarine, aircraft and military equipment application. However, in the current situation, MEMS AHRS technology can replace the high-priced IMU in MEMS AHRS selected application field. In this paper, wireless hull motion measurement system was suggested for measuring key elements of ship's movement such as rolling, pitching and yawing using gyro, acceleration and magnetic sensors of AHRS. In order to reduce the error such as instantaneous acceleration, effects and vibration of geomagnetic, we have adopted the sensors equipped with Kalman filtering. The Wireless hull motion measurement system using AHRS sensors was tested in actual ship and it could easily be applied in limited installation circumstances of the ship. In the future, this system can be useful in the navigation safety and marine accident analysis by using with ship equipment such as INS or VDR in the maritime.