• Title/Summary/Keyword: Voxceleb

Search Result 2, Processing Time 0.014 seconds

Speaker verification with ECAPA-TDNN trained on new dataset combined with Voxceleb and Korean (Voxceleb과 한국어를 결합한 새로운 데이터셋으로 학습된 ECAPA-TDNN을 활용한 화자 검증)

  • Keumjae Yoon;Soyoung Park
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.2
    • /
    • pp.209-224
    • /
    • 2024
  • Speaker verification is becoming popular as a method of non-face-to-face identity authentication. It involves determining whether two voice data belong to the same speaker. In cases where the criminal's voice remains at the crime scene, it is vital to establish a speaker verification system that can accurately compare the two voice evidence. In this study, to achieve this, a new speaker verification system was built using a deep learning model for Korean language. High-dimensional voice data with a high variability like background noise made it necessary to use deep learning-based methods for speaker matching. To construct the matching algorithm, the ECAPA-TDNN model, known as the most famous deep learning system for speaker verification, was selected. A large dataset of the voice data, Voxceleb, collected from people of various nationalities without Korean. To study the appropriate form of datasets necessary for learning the Korean language, experiments were carried out to find out how Korean voice data affects the matching performance. The results showed that when comparing models learned only with Voxceleb and models learned with datasets combining Voxceleb and Korean datasets to maximize language and speaker diversity, the performance of learning data, including Korean, is improved for all test sets.

A study on speech disentanglement framework based on adversarial learning for speaker recognition (화자 인식을 위한 적대학습 기반 음성 분리 프레임워크에 대한 연구)

  • Kwon, Yoohwan;Chung, Soo-Whan;Kang, Hong-Goo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.5
    • /
    • pp.447-453
    • /
    • 2020
  • In this paper, we propose a system to extract effective speaker representations from a speech signal using a deep learning method. Based on the fact that speech signal contains identity unrelated information such as text content, emotion, background noise, and so on, we perform a training such that the extracted features only represent speaker-related information but do not represent speaker-unrelated information. Specifically, we propose an auto-encoder based disentanglement method that outputs both speaker-related and speaker-unrelated embeddings using effective loss functions. To further improve the reconstruction performance in the decoding process, we also introduce a discriminator popularly used in Generative Adversarial Network (GAN) structure. Since improving the decoding capability is helpful for preserving speaker information and disentanglement, it results in the improvement of speaker verification performance. Experimental results demonstrate the effectiveness of our proposed method by improving Equal Error Rate (EER) on benchmark dataset, Voxceleb1.