International Journal of Computer Science & Network Security
/
제24권1호
/
pp.107-118
/
2024
With the seamless growth of the technology, network usage requirements are expanding day by day. The majority of electronic devices are capable of communication, which strongly requires a secure and reliable network. Network-based intrusion detection systems (NIDS) is a new method for preventing and alerting computers and networks from attacks. Machine Learning is an emerging field that provides a variety of ways to implement effective network intrusion detection systems (NIDS). Bagging and Boosting are two ensemble ML techniques, renowned for better performance in the learning and classification process. In this paper, the study provides a detailed literature review of the past work done and proposed a novel ensemble approach to develop a NIDS system based on the voting method using bagging and boosting ensemble techniques. The test results demonstrate that the ensemble of bagging and boosting through voting exhibits the highest classification accuracy of 99.98% and a minimum false positive rate (FPR) on both datasets. Although the model building time is average which can be a tradeoff by processor speed.
Mix 네트워크는 전자투표 시스템에서 익명성 보장을 위해서 중요한 역할을 담당하고 있으며 많은 mixnet 방식들이 현재까지 제안되고 있다. 그러데, 기존의 방식들은 안전한 mixing 동작들을 구현하기 위해서 복잡하고 비용부담이 있는 영지식 증명 방식을 사용하고 있다. 2010년도에 Seb$\acute{e}$ 등은 암호학적으로 안전한 해쉬 함수를 사용해서 효율적이고 비용 부담이 적은 mixnet 방식을 제안하였다. 본 논문에서 우리는 같은 가정하에서 Seb$\acute{e}$의 방식보다 안전하고 효율적이고 빠른 방식을 제안한다.
본 논문에서는 신뢰성을 명가하는 데 있어서 소프트웨어 및 하드웨어 측면을 고려한 통합된 마코브 모델링(Markov modeling)으로 AVTMR(AlI Voting Triple Modular Redundancy) 시스템의 신뢰성을 분석한다. 본 시스템의 모델링은 하드웨어의 경우에 고장율이 시불변 특성을 가지며, 소프트웨어 경우에는 시 가변 특성으로 모델링되어 AVTMR 시스템과 단일 시스템에 대한 신뢰성 비교를 한다. 특히, 소프트웨어적인 특성은 G-O/NHPP 기법을 이용하여 분석이 되며, AVTMR 시스템의 전체적인 특성을 소프트웨어 및 하드웨어적인 관점에서 고장율 따른 특성을 이해할 수 있게 된다. 평가된 AVTMR 은 엄베디드 통신 시스템, 항공기 등의 결함 허용 시스댐에 요구되는 스팩에 맞도록 설계를 하기 위한 기반을 제시한다.
침입감내 기술은 기존의 정보보호 기술이 방어하지 못하는 공격들이 있는 상황에서 일정 시간 동안 일정 수준의 서비스 품질을 유지시키기 위해 사용되는 기술을 일컫는 말이다. 침입감내 기술을 통해서, 서비스 혹은 이를 제공하는 시스템의 가용성 및 신뢰성을 높여 줄 수 있고, 공격으로 인한 피해를 줄일 수 있게 된다. 침입감내 기술의 핵심 기술 중 하나가 그룹관리 프로토콜 (GMP : Group Management Protocol) 및 투표 기능(Voting) 이다. 본 논문은 이 두 요소기술이 갖는 신뢰성을 수학적으로 검증하고 또한, 시뮬레이션을 통한 검증을 수행하였다. 이러한 분석이 갖는 의미는, 분석 결과를 활용한 보안 정책을 만들 수 있다는 것과, 다수개의 시스템의 결과를 기반으로 의사결정을 해야 하는 경우에 어떠한 분석 절차를 가져야 하는 지에 대한 방법론을 제시한다는 것이다.
본 논문에서는 무릎 MR 영상에서 반월상 연골의 자동 위치화, 다중 아틀라스 기반 지역적 가중 투표를 통한 반월상 연골 분할 및 패치 기반 윤곽선 특징 분류를 통한 반월상 연골 자동 분할 방법을 제안한다. 첫째, 뼈와 무릎 관절 연골을 분할한 후 이를 이용하여 반월상 연골의 관심볼륨영역을 자동 위치화한다. 둘째, 반월상 연골의 관심볼륨영역에서 형상 및 밝기값 분포 가중치를 고려한 다중 아틀라스 기반 지역적 가중 투표를 통해 반월상 연골을 분할한다. 셋째, 밝기값이 유사한 측부 인대로의 누출을 제거하기 위해 형상 및 거리 가중치를 고려한 패치 기반 윤곽선 특징 분류를 통해 반월상 연골 분함을 개선한다. 제안 방법을 통한 분할 결과와 수동 분할 결과 간 다이스 유사계수는 내측 반월상 연골은 80.13%, 외측 반월상 연골은 80.81%를 보였으며 다중 아틀라스 기반 지역적 가중투표를 통한 분할 방법과 비교하여 내 측 및 외측 반월상 연 골 각각 7.25%, 1.31% 향상되었다.
협력적 여과 시스템에서 대부분의 사용자들은 모든 아이템에 대하여 선호도를 평가하지 않으므로 인하여 사용자~아이템 행렬은 희박성을 나타내며, 또한 사용자가 평가하지 않은 아이템으로부터 결측치가 발생한다. 일반적인 결측치 예측 방법은 특정 대상의 사용자가 평가하지 않은 결측치를 이 사용자와 비슷한 흥미를 갖는 사용자들의 평가값을 기반으로 예측하나, 기본 평가값 예측 방법은 사용자-아이템 렬의 결측치를 특정 사용자가 아닌 전체 사용자에 대하여 예측한다. 기본 평가값 예측 방법 중 가장 많이 사용되는 방법은 아이템 평균이나 사용자 평균을 이용한 방법이다. 그러나 이 방법은 아이템이나 사용자의 특성, 또한 데이타 집합의 분포 특성을 전혀 고려하지 않는다는 문제점을 갖는다. 본 논문에서는 이러한 문제점을 해결하기 위하여 데이타 집합에 나타난 사용자의 변동 계수를 이용하는 기본 평가값 예측방법을 제안한다. 제안한 방법에서는 수식을 이용하여 자동적으로 사용자 변동 계수의 임계값을 선택하고, 그 임계값에 따라 사용자 평균에서 아이템 평균으로 전환하여 사용자들의 결측치에 대한 기본 평가값을 결정한다. 그러나 사용자 변동 계수들의 분포 정보로 인하여 사용자 변동 계수와 임계갈이 항상 일정한 관계를 유지하는 것이 아니므로, 제안된 방법에서는 임계값을 선택하기 위하여 사용자 변동 계수의 평균과 변동 계수의 분포 정보를 병합한다. 제안된 방법은 사용자가 영화에 대하여 평가한 MovieLens 데이타 집합을 대상으로 평가되었으며, 기존의 기본 평가값 예측 방법보다 그 성능이 우수함을 보인다.
본 논문은 일선학교에서 학기 초마다 행해지고 있는 학교 급 임원 선출 방법의 하나인 서면 투표방식의 불편함을 보완할 수 있는 새로운 대안을 모색해보고자 연구된 것으로 학생 대다수에게 보급되어 있는 휴대폰, PDA, PC 등을 활용하여 실시간으로 임원 선출 및 의사 결정에 참여할 수 있는 유무선 연동의 모바일 전자투표 시스템을 설계 및 구현하여 활용한 결과를 토대로 작성되었다. 매학기 선거철만 되면 학교 임원 선출을 위해 특정한 장소에 모여 길게 줄을 서서 기다려야만했던 불편함과 그에 따른 수업결손을 최소화하기 위하여 공공장소가 아닌 곳에서도 언제 어디서나 의사결정에 참여 할 수 있는 전자투표제가 고려되어야 할 시점이 도래하였다. 더 나아가 본 연구는 유비쿼터스 시대에 맞는 새로운 학생 선거문화를 생각해볼 수 있는 계기가 될 것이며, 학생자치활동 및 학교 급 경영의 의사결정 시 학부모와 학생참여를 위한 도구로써 현장에서 유용하게 활용될 수 있을 것이다.
본 논문에서는 투표기법을 이용하여 서술형 주관식 문제에 대한 학습자 답안을 자동으로 채점하는 모델을 제안한다. 제안하는 방법은 모델 구축 비용을 줄이기 위해서, 문제 유형별로 세분화하여 서술형 주관식 답안 자동 채점 모델을 따로 구축하지 않는다. 제안하는 방법은 서술형 주관식 답안 자동 채점에 유용한 자질을 추출하기 위해서, 모범 답안과 학습자 답안을 비교한 결과를 바탕으로 다양한 자질을 추출한다. 제안하는 방법은 답안 채점 결과의 신뢰성을 높이기 위해서, 각 학습자 답안을 여러 기계학습 기반 분류기를 이용하여 채점하고, 각 채점 결과를 투표하여 만장일치로 선택한 채점 결과를 최종 채점 결과로 결정한다. 실험결과 기계학습 기반 분류기 C4.5만 사용한 채점 결과는 정확률이 83.00%인데 반해, 기계학습 기반 분류기 C4.5, ME, SVM에서 만장일치로 선택한 채점 결과는 정확률이 90.57%까지 개선되었다.
Tracking of moving objects within video streams is a complex and time-consuming process. Large number of moving objects increases the time for computation of tracking the moving objects. Because of large computations, there are real-time processing problems in tracking of moving objects. Also, the change of environment causes errors in estimation of tracking information. In this paper, we present a new method for tracking of moving objects using optical flow motion analysis. Optical flow represents an important family of visual information processing techniques in computer vision. Segmenting an optical flow field into coherent motion groups and estimating each underlying motion are very challenging tasks when the optical flow field is projected from a scene of several moving objects independently. The problem is further complicated if the optical flow data are noisy and partially incorrect. Optical flow estimation based on regulation method is an iterative method, which is very sensitive to the noisy data. So we used the Combinatorial Hough Transform (CHT) and Voting Accumulation for finding the optimal constraint lines. To decrease the operation time, we used logical operations. Optical flow vectors of moving objects are extracted, and the moving information of objects is computed from the extracted optical flow vectors. The simulation results on the noisy test images show that the proposed method finds better flow vectors and more correctly estimates the moving information of objects in the real time video streams.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.