• 제목/요약/키워드: Voting System

검색결과 194건 처리시간 0.019초

텍스트 마이닝을 이용한 2012년 한국대선 관련 트위터 분석 (Analysis of Twitter for 2012 South Korea Presidential Election by Text Mining Techniques)

  • 배정환;손지은;송민
    • 지능정보연구
    • /
    • 제19권3호
    • /
    • pp.141-156
    • /
    • 2013
  • 최근 소셜미디어는 전세계적 커뮤니케이션 도구로서 사용에 전문적인 지식이나 기술이 필요하지 않기 때문에 이용자들로 하여금 콘텐츠의 실시간 생산과 공유를 가능하게 하여 기존의 커뮤니케이션 양식을 새롭게 변화시키고 있다. 특히 새로운 소통매체로서 국내외의 사회적 이슈를 실시간으로 전파하면서 이용자들이 자신의 의견을 지인 및 대중과 소통하게 하여 크게는 사회적 변화의 가능성까지 야기하고 있다. 소셜미디어를 통한 정보주체의 변화로 인해 데이터는 더욱 방대해지고 '빅데이터'라 불리는 정보의 '초(超)범람'을 야기하였으며, 이러한 빅데이터는 사회적 실제를 이해하기 위한 새로운 기회이자 의미 있는 정보를 발굴해 내기 위한 새로운 연구분야로 각광받게 되었다. 빅데이터를 효율적으로 분석하기 위해 다양한 연구가 활발히 이루어지고 있다. 그러나 지금까지 소셜미디어를 대상으로 한 연구는 개괄적인 접근으로 제한된 분석에 국한되고 있다. 이를 적절히 해결하기 위해 본 연구에서는 트위터 상에서 실시간으로 방대하게 생성되는 빅스트림 데이터의 효율적 수집과 수집된 문헌의 다양한 분석을 통한 새로운 정보와 지식의 마이닝을 목표로 사회적 이슈를 포착하기 위한 실시간 트위터 트렌드 마이닝 시스템을 개발 하였다. 본 시스템은 단어의 동시출현 검색, 질의어에 의한 트위터 이용자 시각화, 두 이용자 사이의 유사도 계산, 트렌드 변화에 관한 토픽 모델링 그리고 멘션 기반 이용자 네트워크 분석의 기능들을 제공하고, 이를 통해 2012년 한국 대선을 대상으로 사례연구를 수행하였다. 본 연구를 위한 실험문헌은 2012년 10월 1일부터 2012년 10월 31일까지 약 3주간 1,737,969건의 트윗을 수집하여 구축되었다. 이 사례연구는 최신 기법을 사용하여 트위터에서 생성되는 사회적 트렌드를 마이닝 할 수 있게 했다는 점에서 주요한 의의가 있고, 이를 통해 트위터가 사회적 이슈의 변화를 효율적으로 추적하고 예측하기에 유용한 도구이며, 멘션 기반 네트워크는 트위터에서 발견할 수 있는 고유의 비가시적 네트워크로 이용자 네트워크의 또 다른 양상을 보여준다.

개선된 배깅 앙상블을 활용한 기업부도예측 (Bankruptcy prediction using an improved bagging ensemble)

  • 민성환
    • 지능정보연구
    • /
    • 제20권4호
    • /
    • pp.121-139
    • /
    • 2014
  • 기업의 부도 예측은 재무 및 회계 분야에서 매우 중요한 연구 주제이다. 기업의 부도로 인해 발생하는 비용이 매우 크기 때문에 부도 예측의 정확성은 금융기관으로서는 매우 중요한 일이다. 최근에는 여러 개의 모형을 결합하는 앙상블 모형을 부도 예측에 적용해 보려는 연구가 큰 관심을 끌고 있다. 앙상블 모형은 개별 모형보다 더 좋은 성과를 내기 위해 여러 개의 분류기를 결합하는 것이다. 이와 같은 앙상블 분류기는 분류기의 일반화 성능을 개선하는 데 매우 유용한 것으로 알려져 있다. 본 논문은 부도 예측 모형의 성과 개선에 관한 연구이다. 이를 위해 사례 선택(Instance Selection)을 활용한 배깅(Bagging) 모형을 제안하였다. 사례 선택은 원 데이터에서 가장 대표성 있고 관련성 높은 데이터를 선택하고 예측 모형에 악영향을 줄 수 있는 불필요한 데이터를 제거하는 것으로 이를 통해 예측 성과 개선도 기대할 수 있다. 배깅은 학습데이터에 변화를 줌으로써 기저 분류기들을 다양화시키는 앙상블 기법으로 단순하면서도 성과가 매우 좋은 것으로 알려져 있다. 사례 선택과 배깅은 각각 모형의 성과를 개선시킬 수 있는 잠재력이 있지만 이들 두 기법의 결합에 관한 연구는 아직까지 없는 것이 현실이다. 본 연구에서는 부도 예측 모형의 성과를 개선하기 위해 사례 선택과 배깅을 연결하는 새로운 모형을 제안하였다. 최적의 사례 선택을 위해 유전자 알고리즘이 사용되었으며, 이를 통해 최적의 사례 선택 조합을 찾고 이 결과를 배깅 앙상블 모형에 전달하여 새로운 형태의 배깅 앙상블 모형을 구성하게 된다. 본 연구에서 제안한 새로운 앙상블 모형의 성과를 검증하기 위해 ROC 커브, AUC, 예측정확도 등과 같은 성과지표를 사용해 다양한 모형과 비교 분석해 보았다. 실제 기업데이터를 사용해 실험한 결과 본 논문에서 제안한 새로운 형태의 모형이 가장 좋은 성과를 보임을 알 수 있었다.

정치인 경호제도의 문제점 및 개선방안 (The Problems and Improvement Measures of Protection for Politician)

  • 조성구;김태민
    • 시큐리티연구
    • /
    • 제22호
    • /
    • pp.169-196
    • /
    • 2010
  • 정치적으로 국민을 대표하고 국가의 미래를 좌우한다는 측면에서 정치인의 중요성은 더해가고 있지만 경호관련 법제의 미비, 경호에 대한 부정적 사회인식, 그리고 범죄 및 테러의 증가로 말미암아 정치인들은 안전을 보장받을 수 없는 현실에 처해있다. 정치인테러에 대한 대응은 치안유지 차원이 아닌 국가안보차원에서 처리되어야 하는 것이 마땅하고, 이를 위해 근본적인 법적근거의 마련과 정치인의 특수성을 고려한 전문적 경호기법이 정립되어야 한다. 범국가적 차원에서 정치인테러에 대한 법제의 보완과 새로운 입법을 통하여 근본적인 해결책이 마련되어야만 할 것이다. 특히 정치인 경호에 있어서는 경호대상자의 안전과 유권자의 표심확보라는 두 가지 모두를 충족해야하는 양면성을 가지고 있다. 따라서 정치인 경호를 효율적으로 수행하기 위해서는 체계적인 경호제도와 특수한 경호기법이 요구되지만 아직까지 전문적으로 연구되지는 못한 실정이다. 본 연구에서는 정치인 경호제도의 개선방안을 다음과 같이 두 가지 측면에서 제시하였다. 첫째, 정치인 경호에 대한 법적 근거 마련을 제안하였다. 정치인을 테러로부터 보호하기 위해 17대 국회에서 개정 법률안 등을 발의하였으나 계류 만료폐기 된 상태이다. 여러 국회의원들이 상정한 법률안은 단순히 공경호 범위에 확대에 그쳤다. 본 연구에서는 법적근거 마련을 두 가지로 나누어 보았다. 하나는 효과적인 공경호의 파견 형태이고 다른 하나는 민간경비에 의한 정치인 경호이다. 둘째, 정치인 경호의 환경적 발전방안을 제시했다. 그 내용으로는 사회적 인식, 정치인의 심리, 유권자의 심리, 정치적 특수성을 분석하여 개선 방안을 제시하였다. 인류가 지속되는 한 정치활동은 사라지지 않을 것이다. 정치지도자는 인류의 미래를 결정짓는 역할을 수행함에 따라 그의 안전 또한 인류의 중요한 과제임에는 틀림없다. 앞으로 정치인에 대한 보다 전문적이고 실효적인 법안마련과 학자들의 심도 있는 연구가 요구된다.

  • PDF

기계학습을 이용한 수출신용보증 사고예측 (The Prediction of Export Credit Guarantee Accident using Machine Learning)

  • 조재영;주지환;한인구
    • 지능정보연구
    • /
    • 제27권1호
    • /
    • pp.83-102
    • /
    • 2021
  • 2020년 8월 정부는 한국판 뉴딜을 뒷받침하기 위한 공공기관의 역할 강화방안으로서 각 공공기관별 역량을 바탕으로 5대 분야에 걸쳐 총 20가지 과제를 선정하였다. 빅데이터(Big Data), 인공지능 등을 활용하여 대국민 서비스를 제고하고 공공기관이 보유한 양질의 데이터를 개방하는 등의 다양한 정책을 통해 한국판 뉴딜(New Deal)의 성과를 조기에 창출하고 이를 극대화하기 위한 다양한 노력을 기울이고 있다. 그중에서 한국무역보험공사(KSURE)는 정책금융 공공기관으로 국내 수출기업들을 지원하기 위해 여러 제도를 운영하고 있는데 아직까지는 본 기관이 가지고 있는 빅데이터를 적극적으로 활용하지 못하고 있는 실정이다. 본 연구는 한국무역보험공사의 수출신용보증 사고 발생을 사전에 예측하고자 공사가 보유한 내부 데이터에 기계학습 모형을 적용하였고 해당 모형 간에 예측성과를 비교하였다. 예측 모형으로는 로지스틱(Logit) 회귀모형, 랜덤 포레스트(Random Forest), XGBoost, LightGBM, 심층신경망을 사용하였고, 평가 기준으로는 전체 표본의 예측 정확도 이외에도 표본별 사고 확률을 구간으로 나누어 높은 확률로 예측된 표본과 낮은 확률로 예측된 경우의 정확도를 서로 비교하였다. 각 모형별 전체 표본의 예측 정확도는 70% 내외로 나타났고 개별 표본을 사고 확률 구간별로 세부 분석한 결과 양 극단의 확률구간(0~20%, 80~100%)에서 90~100%의 예측 정확도를 보여 모형의 현실적 활용 가능성을 보여주었다. 제2종 오류의 중요성 및 전체적 예측 정확도를 종합적으로 고려할 경우, XGBoost와 심층신경망이 가장 우수한 모형으로 평가되었다. 랜덤포레스트와 LightGBM은 그 다음으로 우수하며, 로지스틱 회귀모형은 가장 낮은 성과를 보였다. 본 연구는 한국무역보험공사의 빅데이터를 기계학습모형으로 분석해 업무의 효율성을 높이는 사례로서 향후 기계학습 등을 활용하여 실무 현장에서 빅데이터 분석 및 활용이 활발해지기를 기대한다.