• Title/Summary/Keyword: Voting EM algorithm

Search Result 1, Processing Time 0.013 seconds

Online Learning of Bayesian Network Parameters for Incomplete Data of Real World (현실 세계의 불완전한 데이타를 위한 베이지안 네트워크 파라메터의 온라인 학습)

  • Lim, Sung-Soo;Cho, Sung-Bae
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.12
    • /
    • pp.885-893
    • /
    • 2006
  • The Bayesian network(BN) has emerged in recent years as a powerful technique for handling uncertainty iii complex domains. Parameter learning of BN to find the most proper network from given data set has been investigated to decrease the time and effort for designing BN. Off-line learning needs much time and effort to gather the enough data and since there are uncertainties in real world, it is hard to get the complete data. In this paper, we propose an online learning method of Bayesian network parameters from incomplete data. It provides higher flexibility through learning from incomplete data and higher adaptability on environments through online learning. The results of comparison with Voting EM algorithm proposed by Cohen at el. confirm that the proposed method has the same performance in complete data set and higher performance in incomplete data set, comparing with Voting EM algorithm.