• 제목/요약/키워드: Voting EM 알고리즘

검색결과 2건 처리시간 0.018초

현실 세계의 불완전한 데이타를 위한 베이지안 네트워크 파라메터의 온라인 학습 (Online Learning of Bayesian Network Parameters for Incomplete Data of Real World)

  • 임성수;조성배
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제33권12호
    • /
    • pp.885-893
    • /
    • 2006
  • 최근 현실 세계의 불확실한 환경을 극복하기 위한 방법 중 하나로 베이지안 네트워크(Bayesian network, BN)가 부각되고 있다. BN의 파라메터 학습은 주어진 평가 척도에 따라 데이타의 훈련집합에 가장 잘 부합되는 네트워크 파라메터를 구하는 것으로, BN 설계에 드는 시간과 노력을 줄이기 위해 연구되어 왔다. 기존의 오프라인 학습은 학습에 필요한 충분한 양의 데이타를 모으기에는 많은 노력과 시간이 필요하다. 또한 현실세계는 불완전성을 포함하고 있어 완전한 데이타를 얻기 힘들다. 본 논문에서는 불완전한 데이타로부터 온라인으로 BN 파라메터를 학습하는 방법을 제안한다. 이 방법은 불완전한 데이타로부터 학습이 가능하도록 하여 학습의 유연성을 높이고, 실시간 학습을 통해 변화하는 환경에 대한 적응성을 높인다. Cohen 등이 제안한 온라인 파라메터 학습방법인 Voting EM 알고리즘과 비교 실험한 결과, 완전한 데이타를 가지고 학습한 경우에는 동일한 학습 결과를, 그리고 불완전한 데이타의 경우에는 보다 나은 학습 결과를 얻었다.

불완전한 데이터로부터 베이지안 네트워크 파라메터의 온라인 학습 (Online Learning for Bayesian Network Parameters from Incomplete Data)

  • 임성수;조성배
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 가을 학술발표논문집 Vol.32 No.2 (2)
    • /
    • pp.652-654
    • /
    • 2005
  • 베이지안 네트워크의 파라메터 학습은 주어진 평가 척도에 따라 데이터의 훈련집합에 가장 잘 부합되는 네트워크 파라메터를 구하는 것으로, 베이지안 네트워크 설계에 드는 시간과 노력을 줄이기 위해 연구되어 왔다. 본 논문에서는 불완전한 데이터로부터 온라인으로 베이지안 네트워크의 파라메터를 학습하는 방법을 제안한다. 제안하는 방법은 불완전한 데이터로부터 학습이 가능하도록 하여 학습의 유연성을 높이고, 온라인 학습을 통해 사용자 또는 환경의 변화를 잘 모델링한다. Choen 등이 제안한 온라인 파라메터 학습 방법인 Voting EM 알고리즘과 비교 실험 결과, 제안하는 방법의 유용성을 확인할 수 있었다.

  • PDF