• Title/Summary/Keyword: Voting EM 알고리즘

Search Result 2, Processing Time 0.018 seconds

Online Learning of Bayesian Network Parameters for Incomplete Data of Real World (현실 세계의 불완전한 데이타를 위한 베이지안 네트워크 파라메터의 온라인 학습)

  • Lim, Sung-Soo;Cho, Sung-Bae
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.12
    • /
    • pp.885-893
    • /
    • 2006
  • The Bayesian network(BN) has emerged in recent years as a powerful technique for handling uncertainty iii complex domains. Parameter learning of BN to find the most proper network from given data set has been investigated to decrease the time and effort for designing BN. Off-line learning needs much time and effort to gather the enough data and since there are uncertainties in real world, it is hard to get the complete data. In this paper, we propose an online learning method of Bayesian network parameters from incomplete data. It provides higher flexibility through learning from incomplete data and higher adaptability on environments through online learning. The results of comparison with Voting EM algorithm proposed by Cohen at el. confirm that the proposed method has the same performance in complete data set and higher performance in incomplete data set, comparing with Voting EM algorithm.

Online Learning for Bayesian Network Parameters from Incomplete Data (불완전한 데이터로부터 베이지안 네트워크 파라메터의 온라인 학습)

  • Lim Sungsoo;Cho Sung-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.652-654
    • /
    • 2005
  • 베이지안 네트워크의 파라메터 학습은 주어진 평가 척도에 따라 데이터의 훈련집합에 가장 잘 부합되는 네트워크 파라메터를 구하는 것으로, 베이지안 네트워크 설계에 드는 시간과 노력을 줄이기 위해 연구되어 왔다. 본 논문에서는 불완전한 데이터로부터 온라인으로 베이지안 네트워크의 파라메터를 학습하는 방법을 제안한다. 제안하는 방법은 불완전한 데이터로부터 학습이 가능하도록 하여 학습의 유연성을 높이고, 온라인 학습을 통해 사용자 또는 환경의 변화를 잘 모델링한다. Choen 등이 제안한 온라인 파라메터 학습 방법인 Voting EM 알고리즘과 비교 실험 결과, 제안하는 방법의 유용성을 확인할 수 있었다.

  • PDF