• Title/Summary/Keyword: Vorticity field

Search Result 153, Processing Time 0.025 seconds

3-D Dynamic Visualization by Stereoscopic PIV

  • LEE Young-Ho
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.15-23
    • /
    • 2004
  • The present study is aimed to achieve dynamic visualization from the in-house 3-D stereoscopic PIV to represent quantitative flow information such as time-resolved 3-D velocity distribution, vorticity, turbulent intensity or Reynolds stresses and so on. One of the application of the present study is Leading edge extension(LEX) flow appearing on modern delta wing aircraft. The other is mixing flow in stirring tank used in industry field. LEX in a highly swept shape applied to a delta wing features the modern air-fighters. The LEX vortices generated upon the upper surface of the wing at high angle of attack enhance the lift force of the delta wing by way of increased negative suction pressure over the surfaces. The present method resolves also the complicated flow patterns of two type impellers rotating in stirring vessel. Flow quantities such as three velocity vector components, vorticity and other flow information can be easily visualized via the 3D time-resolved post-processing visualization. And it makes the easy understanding of the unsteady flow characteristics of the typical industrial mixers.

  • PDF

Generation of Solenoidal Modes in Turbulence Driven by Compressive Driving

  • Lim, Jeonghoon;Cho, Jungyeon;Yoon, Heesun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.47.3-47.3
    • /
    • 2019
  • In this talk, we present numerical simulations of driven hydrodynamic and magnetohydrodynamic (MHD) turbulence with weak/strong imposed magnetic fields. We mainly focus on turbulence driven compressively (∇ × f = 0). Our main goal is to examine how magnetic fields play a role in generating solenoidal modes in compressive turbulence. From our simulation analysis, we find that solenoidal energy densities in hydrodynamic and weak magnetic field cases are generated up to ~ 30% of total ones. On the other hand, in the case of strong magnetic fields, solenoidal energy densities are excited up to ~ 70%. To interpret the results, we further analyze vorticity (w = ∇ × u) equation and find that magnetic fields directly create solenoidal motions, and magnetic tension is most effective in this sense. In hydrodynamic simulations, however, we find that viscous dissipation provides vorticity seeds at the very early stage and they are amplified via stretching process. Lastly, in weak magnetic fields cases, we find that solenoidal motions are created by the effects of magnetic fields, viscosity, and stretching in conjunction.

  • PDF

Large Eddy Simulation for a 2-D hydrofoil using VIC(Vortex-In-Cell) method (VIC 방법을 사용한 2차원 날개의 LES 해석)

  • Kim, M.S.;Kim, Y.C.;Suh, J.C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.407-413
    • /
    • 2011
  • VIC (Vortex-In-Cell) method for viscous incompressible flow is presented to simulate the wake behind a modified NACA16 foil. With uniform rectangular grid, the velocity in field is calculated using streamfunction from vorticity field by solving the Poisson equation in which FFT(Fast Fourier Transform) is combined with 2nd order finite difference scheme. Here, LES(Large Eddy Simulation) with Smagorinsky model is applied for turbulence calculation. Effective viscosity is formulated using magnitude of strain tensor(or vorticity). Then the turbulent diffusion as well as viscous diffusion becomes particle strength exchange(PSE) with averaged eddy viscosity. The well-established panel method is combined to obtain the irrotational velocity and to apply the no-penetration boundary condition on the body panel. And wall diffusion is used for no-slip condition numerical results of turbulent stresses are compared with experimental results (Bourgoyne, 2003). Before comparing process, LES(Large Eddy Simulation) SGS(Subgrid scale) stress is transformed Reynolds averaged stress (Winckelmans, 2001).

  • PDF

Relations of Near-Wall Streamwise Vortices to Wall Pressure Fluctuations in a Turbulent Boundary Layer (난류경계층내 주유동방향 와구조와 벽압력 변동간의 상관관계)

  • Seong, Hyeong-Jin;Kim, Jung-Nyeon;Choe, Jeong-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.8
    • /
    • pp.1068-1076
    • /
    • 2001
  • The relations between wall pressure fluctuations and near-wall streamwise vortices are investigated in a spatially-developing turbulent boundary layer using the direct numerical simulation. The power spectra and two-point correlations of wall pressure fluctuations are presented to validate the present simulation. Emphasis is placed on the identification of the correlation between wall pressure fluctuations and streamwise vorticities. It is shown that wall pressure fluctuations are directly linked with the upstream streamwise vortices in the buffer region of the turbulent boundary layer. The maximum correlation occurs with the spanwise displacement from the location of wall pressure fluctuations. The conditionally-averaged vorticity field and the quadrant analysis of Reynolds shear stress indicate that the sweep events due to streamwise vortices generate positive wall pressure fluctuations, while negative wall pressure fluctuations are created beneath the ejection events and vortex cores. The instantaneous flow field and time records reveal that the rise of high wall pressure fluctuations coincide with the passages of the upstream streamwise vortices.

Construction of Orthogonal Basis Functions with Non-Divergent Barotropic Rossby-Haurwitz Waves

  • Cheong, Hyeong-Bin;Jeong, Hanbyeol;Kim, Wonho
    • Journal of the Korean earth science society
    • /
    • v.35 no.5
    • /
    • pp.333-341
    • /
    • 2014
  • A new set of basis functions was constructed using the Rossby-Haurwitz waves, which are the eigenfunctions of nondivergent barotropic vorticity equations on the sphere. The basis functions were designed to be non-separable, that is, not factored into functions of either the longitude or the latitude. Due to this property, the nodal lines of the functions are aligned neither along with the meridian nor the parallel. The basis functions can be categorized into groups of which members have the same degree or the total wavenumber-like index on the sphere. The orthonormality of the basis functions were found to be close to the machine roundoffs, giving the error of $O(10^{-15})$ or $O(10^{-16})$ for double-precision computation (64 bit arithmetic). It was demonstrated through time-stepping procedure that the basis functions were also the eigenfunctions of the non-divergent barotropic vorticity equations. The projection of the basis functions was carried out onto the low-resolution geopotential field of Gaussian bell, and compared with the theory. The same projections were performed for the observed atmospheric-geopotential height field of 500 hPa surface to demonstrate decomposition into the fields that contain disturbance of certain range of horizontal scales. The usefulness of the new basis functions was thus addressed for application to the eigenmode analysis of the atmospheric motions on the global domain.

Linear estimation of conditional eddies in turbulence (난류구조의 조건와류에 대한 선형적 평가)

  • 성형진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1175-1188
    • /
    • 1988
  • Linear estimation in isotropic turbulence is examined to approximate conditional averages in the form of fluctuating velocity fields conditioned on local velocity. The conditional flow fields and their associated vorticity field are computer using experimental data [Van Atta and Chen] and energy spectrum model [Driscoll and Kennedy]. It appears that ring vorticies could be the dominant structure. Due to the extremely large vorticity in the viscous region of a conditional ring vortex, the energy spectrum model can be used appropriately by changing the Reynolds number. The hairpin vortex could be detected by combining vorticies in isotropic field with an anisotropic orientation imbedded in uniform mean shear flow and this is consistent with other studies [Kim and Moin].

Characteristic Study on Effect of the Vent Mixer to Supersonic Fuel-Air Mixing with Stereoscopic-PIV Method (3차원 PIV 기법을 사용한 벤트혼합기가 초음속 연료-공기 혼합에 미치는 특성 연구)

  • Kim, Chae-Hyoung;Jeung, In-Seuck;Choi, Byung-Il;Kouchi, Toshinori;Masuya, Goro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.378-385
    • /
    • 2012
  • Vent mixer can provide main flow directly into a recirculation region downstream of the mixer to enhance fuel-air mixing efficiency. Based on experimental results of three-dimensional velocity, vorticity and turbulent kinetic energy obtained by a stereoscopic PIV method, the performance of the vent mixer was compared with that of the step mixer which was used as a basic model. Thick shear layers of the vent mixer induced the increase of the penetration height. The turbulent kinetic energy mainly distributed along a boundary layer between the main flow and the jet plume. This turbulent field activates mass transfer in a mixing region, leading to the mixing enhancement.

  • PDF

Objective Estimation of Velocity Streamfunction Field with Discretely Sampled Oceanic Data 1: with Application of Helmholtz Theorem (객관적 해석을 통한 속도 유선함수(streamfunction) 산출 1: 헬름홀쯔(Helmholtz) 정리의 응용)

  • 조황우
    • Journal of Environmental Science International
    • /
    • v.6 no.4
    • /
    • pp.323-333
    • /
    • 1997
  • An objective method for the generation of velocity streamfunction is presented for dealing with discretely sampled oceauc data. The method treats a Poisson equation (forced by vorticity) derived from Helmholtz theorem In which streamfunction is obtained by isolating the non-divergent part of the two-dimensional flow field. With a mixed boundary condition and vorticity field estimated from observed field, the method Is Implemented over the Texas-Louisiana show based on the current meter data of the Texas-Louisiana Shelf Circulation and Transport Processes Study (LATEX) measured at 31 moorings for 32 months (April 1992 - November 1994). The resulting streamfunction pattern is quote consistent with observations. The streamfunction field by this method presents an opportunity to initiauze and to verier computer models for local forecasts of enoronmental flow conditions for ell spill, nutrient and plankton transports as well as opportuuty to understand shelf-wlde low-frequency currents.

  • PDF

Contributions of Heating and Forcing to the High-Latitude Lower Thermosphere: Dependence on the Interplanetary Magnetic Field

  • Kwak, Young-Sil;Richmond, Arthur;Ahn, Byung-Ho;Cho, Kyung-Suk
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.3
    • /
    • pp.205-212
    • /
    • 2010
  • To better understand the physical processes that maintain the high-latitude lower thermospheric dynamics, we have identified relative contributions of the momentum forcing and the heating to the high-latitude lower thermospheric winds depending on the interplanetary magnetic field (IMF) and altitude. For this study, we performed a term analysis of the potential vorticity equation for the high-latitude neutral wind field in the lower thermosphere during the southern summertime for different IMF conditions, with the aid of the National Center for Atmospheric Research Thermosphere-Ionosphere Electrodynamics General Circulation Model (NCAR-TIEGCM). Difference potential vorticity forcing and heating terms, obtained by subtracting values with zero IMF from those with non-zero IMF, are influenced by the IMF conditions. The difference forcing is more significant for strong IMF $B_y$ condition than for strong IMF $B_z$ condition. For negative or positive $B_y$ conditions, the difference forcings in the polar cap are larger by a factor of about 2 than those in the auroral region. The difference heating is the most significant for negative IMF $B_z$ condition, and the difference heatings in the auroral region are larger by a factor of about 1.5 than those in the polar cap region. The magnitudes of the difference forcing and heating decrease rapidly with descending altitudes. It is confirmed that the contribution of the forcing to the high-latitude lower thermospheric dynamics is stronger than the contribution of the heating to it. Especially, it is obvious that the contribution of the forcing to the dynamics is much larger in the polar cap region than in the auroral region and at higher altitude than at lower altitude. It is evident that when $B_z$ is negative condition the contribution of the forcing is the lowest and the contribution of the heating is the highest among the different IMF conditions.

Analysis of Flow Field around Multiple Fluid Spheres in the Low Knudsen Number Region (저 누드센 영역에서 다중 유체구 주위의 유동장 해석)

  • 정창훈;이규원
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.6
    • /
    • pp.733-743
    • /
    • 2003
  • The flow field in multiple fluid sphere systems was studied analytically. The expanded zero vorticity cell model based on Kuwabara's theory (1959) was applied and the effects of gas slippage at the collecting surface were considered. Also, the solid sphere system was extended to fluid sphere including the effects of the induced internal circulation inside the liquid droplet spheres or gas bubble systems. As a result, the obtained analytic solution was converged to the existing solutions for flow field around solid and bubble sphere systems with proper boundary conditions. Based on the resolved flow field, the terminal velocity around the collecting fluid spheres was obtained. Subsequently, this study evaluated the most general solution for flow field around the multiple fluid sphere systems. The obtained flow field in multiple fluid sphere could be used as a fundamental consideration of wet scrubber design and devices for removing particles by fluid-fluid interactions.