• Title/Summary/Keyword: Vorticity Boundary Condition

Search Result 23, Processing Time 0.022 seconds

Objective Estimation of Velocity Streamfunction Field with Discretely Sampled Oceanic Data 1: with Application of Helmholtz Theorem (객관적 해석을 통한 속도 유선함수(streamfunction) 산출 1: 헬름홀쯔(Helmholtz) 정리의 응용)

  • 조황우
    • Journal of Environmental Science International
    • /
    • v.6 no.4
    • /
    • pp.323-333
    • /
    • 1997
  • An objective method for the generation of velocity streamfunction is presented for dealing with discretely sampled oceauc data. The method treats a Poisson equation (forced by vorticity) derived from Helmholtz theorem In which streamfunction is obtained by isolating the non-divergent part of the two-dimensional flow field. With a mixed boundary condition and vorticity field estimated from observed field, the method Is Implemented over the Texas-Louisiana show based on the current meter data of the Texas-Louisiana Shelf Circulation and Transport Processes Study (LATEX) measured at 31 moorings for 32 months (April 1992 - November 1994). The resulting streamfunction pattern is quote consistent with observations. The streamfunction field by this method presents an opportunity to initiauze and to verier computer models for local forecasts of enoronmental flow conditions for ell spill, nutrient and plankton transports as well as opportuuty to understand shelf-wlde low-frequency currents.

  • PDF

Structure of Tip Leakage Flow in a Forward-Swept Axial-Flow Fan Operating at Different Loading Conditions

  • Baek, Je-Hyun;Lee, Gong-Hee;Myung, Hwan-Joo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.1
    • /
    • pp.50-60
    • /
    • 2004
  • An experimental analysis using three-dimensional Laser Doppler Velocimetry(LDV) measurement and computational analysis using the Reynolds stress model in FLUENT are conducted to give a clear understanding of the effect of blade loading on the structure of tip leakage flow in a forward-swept axial-flow fan operating at the maximum efficiency condition ($\Phi$=0.25) and two off-design conditions ($\Phi$=0.21 and 0.30). As the blade loading increases, the onset position of the rolling-up of tip leakage flow moves upstream and the trajectory of tip leakage vortex center is more inclined toward the circumferential direction. Because the casing boundary layer becomes thicker and the mixing between the through-flow and the leakage jet with the different flow direction is enforced, the streamwise vorticity decays more fast with the blade loading increasing. A distinct tip leakage vortex is observed downstream of the blade trailing edge at $\Phi$=0.30, but it is not observed at $\Phi$=0.21 and 0.25.

Effect of Blade Loading on the Structure of Tip Leakage Flow in a Forward-Swept Axial-Flow Fan (블레이드 하중이 축류형 팬에서의 팁 누설 유동구조에 미치는 영향)

  • 이공희;명환주;백제현
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.4
    • /
    • pp.294-304
    • /
    • 2003
  • An experimental analysis using three-dimensional laser Doppler velocimetry(LDV) measurement and computational analysis using the Reynolds stress model in FLUENT are conducted to give a clear understanding of the effect of blade loading on the structure of tip leakage flow in a forward-swept axial-flow fan operating at the maximum efficiency condition ($\Phi$=0.25) and two off-design conditions ($\Phi$=0.21 and 0.30). As the blade loading increases, the onset position of the rolling-up of tip leakage flow moves upstream and the trajectory of tip leakage vortex center is more inclined toward the circumferential direction. Because the casing boundary layer becomes thicker and the mixing between the through-flow and the leakage jet with the different flow direction is enforced, the streamwise vorticity decays more fast with the blade loading increasing. A distinct tip leakage vortex is observed downstream of the blade trailing edge at $\Phi$=0.30, but it is not observed at $\Phi$=0.21 and 0.25.