• 제목/요약/키워드: Vortex sound source

검색결과 25건 처리시간 0.021초

NREL Phase VI 수평축 풍력터빈의 저주파 공력소음 해석에 관한 수치적 연구 (A Numerical Study on Analysis of Low Frequency Aero-acoustic Noise for a HAWT of NREL Phase VI)

  • 모장오;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권8호
    • /
    • pp.1170-1179
    • /
    • 2009
  • 본 연구의 목적은 수평축 풍력터빈인 NREL Phase VI를 대상으로 ANSYS FLUENT에서 제공하는 LES와 FW-H 상사식을 이용하여 풍력발전기로부터 방사되는 저주파 공력소음을 수치적으로 예측하는 것이다. 풍력발전기 공력소음에 관한 어떠한 실험적 자료가 존재하지 않으므로, 먼저 정격풍속에서 토크와 출력 등의 공력성능 수치결과를 실험결과와 비교하여 소음원 예측의 타당성을 검증한 후, 풍속 변화에 따른 공력소음 특성을 분석하였다. 그 결과 수치성능결과는 약0.8%이내에서 실험결과와 잘 일치하였다. 풍속이 증가함에 따라 사극자와 이극자에 의한 총음압레벨은 증가하는 경향을 나타내었다. 또한 풍력터빈 허브중심으로부터 거리가 증가함에 따라 원방에서는 $r^{-1}$, 근방에서는 $r^{-2}$에 비례하여 증가하는 것으로 나타났다. 그리고 거리가 두배 증가함에 따른 총음압레벨은 약 6dB 감소하였다.

소형 송풍기 소음의 음향학적 상사성에 관한 연구 (Acoustical Similarity for Small Cooling Fans Revisited)

  • 김용철;진성훈;이승배
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1995년도 춘계학술대회논문집; 전남대학교, 19 May 1995
    • /
    • pp.196-201
    • /
    • 1995
  • The broadband and discrete sources of sound in small cooling fans of propeller type and centrifugal type were investigated to understand the turbulent vortex structures from many bladed fans using ANSI test plenum for small air-moving devices (AMDs). The noise measurement method uses the plenum as a test apparatus to determine the acoustic source spectral density function at each operating conditions similar to real engineering applications based on acoustic similarity laws. The characteristics of fans including the head rise vs. volumetric flow rate performance were measured using a performance test facility. The sound power spectrum is decomposed into two non-dimensional functions: an acoustic source spectral distribution function F(St,.phi.) and an acoustic system response function G(He,.phi.) where St, He, and .phi. are the Strouhal number, the Helmholtz number, and the volumetric flow rate coefficient, respectively. The autospectra of radiated noise measurements for the fan operating at several volumetric flow rates,.phi., are analyzed using acoustical similarity. The rotating stall in the small propeller fan with a bell-mouth guided is mainly due to a leading edge separation. It creates a blockage in the passage and the reduction in the flow rate. The sound power levels with respect to the rotational speeds were measured to reveal the mechanisms of stall and/or surge for different loading conditions and geometries, for example, fans installed with a impinging plate. Lee and Meecham (1993) studied the effect of the large-scale motions like impinging normally on a flat plate using Large-Eddy Simulation(LES) and Lighthill's analogy.[ASME Winter Annual Meeting 1993, 93-WA/NCA-22]. The dipole and quadrupole sources in the fans tested are shown closely related to the vortex structures involved using cross-correlations of the hot-wire and microphone signals.

  • PDF

원심팬 음원 및 방사 음향장 해석 (An Analysis of the acoustic source and radiation acoustic field of centrifugal fans)

  • 전완호;이덕주
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1998년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.97-104
    • /
    • 1998
  • The objective of this study is to understand the generation mechanism of sound and to develop a prediction method for the unsteady flow field and the acoustic pressure field of a centrifugal fan. Lowson's method is used to predict the acoustic pressure in a free field. A DVM(discrete vortex method) is used to model the centrifugal fan and to calculate the flow field. In order to compare the experimental data, a centrifugal fan and wedge introduced by Weidemann are used in the numerical calculation and the results are compared with the experimental data.

  • PDF

축류형 송풍기의 성능 및 소음 예측을 위한 전산 프로그램의 개발 및 적용 (Development and Application of the Computer Program for the Performance and Noise Prediction of Axial Flow Fan)

  • 정동규;홍순성;이찬
    • 한국유체기계학회 논문집
    • /
    • 제3권3호
    • /
    • pp.31-40
    • /
    • 2000
  • A computer program is developed for the prediction of the aerodynamic performance and the noise characteristics in the basic design step of axial flow fan. The flow field and the performance of fan are analyzed by using the streamline curvature computing scheme with total pressure loss and flow deviation models. Fan noise is assumed to be generated due to the pressure fluctuations induced by wake vortices of fan blades and to radiate via dipole distribution. The vortex-induced fluctuating pressure on blade surface is calculated by combining thin airfoil theory and the predicted flow field data. The predicted performances, sound pressure level and noise directivity patterns of fan by the present method are favorably compared with the test data of actual fan. Furthermore, the present method is shown to be very useful in optimizing design variables of fan with high efficiency and low noise level.

  • PDF

Vehicle-induced aerodynamic loads on highway sound barriers part 2: numerical and theoretical investigation

  • Wang, Dalei;Wang, Benjin;Chen, Airong
    • Wind and Structures
    • /
    • 제17권5호
    • /
    • pp.479-494
    • /
    • 2013
  • The vehicle-induced aerodynamic loads bring vibrations to some of the highway sound barriers, for they are designed in consideration of natural wind loads only. As references to the previous field experiment, the vehicle-induced aerodynamic loads is investigated by numerical and theoretical methodologies. The numerical results are compared to the experimental one and proved to be available. By analyzing the flow field achieved in the numerical simulation, the potential flow is proved to be the main source of both head and wake impact, so the theoretical model is also validated. The results from the two methodologies show that the shorter vehicle length would produce larger negative pressure peak as the head impact and wake impact overlapping with each other, and together with the fast speed, it would lead to a wake without vortex shedding, which makes the potential hypothesis more accurate. It also proves the expectation in vehicle-induced aerodynamic loads on Highway Sound Barriers Part1: Field Experiment, that max/min pressure is proportional to the square of vehicle speed and inverse square of separation distance.

FORMULATION OF NEAR AND FAR ACOUSTIC FIELD FROM AN INCOMPRESSIBLE FLOW FLRCTUATION AROUND THE RIGID WALL

  • Ryu, Ki-Wahn;Lee, Duck-Joo
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1996년도 제11회 수중음향학 학술발표회 논문집 11th Underwater Acoustics Symposium Proceedings
    • /
    • pp.59-62
    • /
    • 1996
  • A numerical study of a two-dimensional acoustic field is carride ort for a spinning vortex pair located neat a wall to investigate the effect of the wall from the spinning quadrupole source in unsteady vortical flows. Based on the known incompressible flow field, the perturbed compressible acoustic terms derived from the Euler equations are calculated. Non-reflecting boundary conditions on the free field and the solid boundary conditions are developed for a generalized curvilinear coordinates system to investigate the effect of a curced wall. It is concluded that the sound generated by the quadrupole sources of unsteady vortical flows in the presence of a flat wall or a circular cylinder can be calculated by using the source terms of hydrodynamic flow fluctuations in both near and far acoustic fields simultaneously.

  • PDF

고속철도 판토그래프의 공력소음 기여도 연구 (Prediction of the Aerodynamic Noise Generated by Pantograph on High Speed Trains)

  • 한재현;김태민;김정태
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.425-431
    • /
    • 2013
  • Nowadays, high speed train has settled down as a fast and convenient environment-friendly transportation and it's need is gradually increasing. However increased train speed leads to increased aerodynamic noise, which causes critically affects comfortability of passengers. Especially, the pantograph of high speed train is protruded out of train body, which is the main factor for increased aerodynamic noise. Since aerodynamic noise caused pantograph should be measured in high speed, it is difficult to measure it and to analysis aerodynamic noise characteristics due to the various types of pantograph. In this research, aerodynamic noise of pantograph is predicted by CFD (Computational Fluid Dynamic) and FW-H (Ffowcs Williams-Hawkings) equation. Also, Wind tunnel test results and numerical simulation results were compared. As a result, Simulation results predicting sound pressure level is very similar with wind tunnel test result. To analyze contribution of the pantograph to the noise of high-speed train, simulation results compared with measurement results of exterior noise. The simulation reuslts found that pantograph is a dominant noise source of high-speed trains's exterior noise in low frequency section. This dominant noise was come out from vortex shedding of the panhead in the pantograph. This research will be utilized for reduce sound pressure level of pantograph.

  • PDF

수치기법을 이용한 원심홴 소음의 음향학적 상사법칙 적용 (An Application of the Acoustic Similarity Law to Centrifugal Fan Noise by Numerical Calculation)

  • 전완호;이덕주
    • 소음진동
    • /
    • 제9권5호
    • /
    • pp.955-965
    • /
    • 1999
  • Centrifugal fans are widely used and the noise generated by the these machines causes one of the most serious problems. In general, the centrifugal fan noise is often dominated by tones at BPF(blade passage frequency) and its higher harmonics. This is a consequence of the strong interaction between the flow discharged form the impeller and the cutoff in the casing. However, only a few researches have been carried out on predicting the noise because of the difficulty in obtaining detailed information about the flow field and casing effects on noise radiation. The objective of this study is to understand the generation mechanism of sound and to develop a prediction method for the unsteady flow field and the acoustic pressure field of a centrifugal fan. We assume that the impeller rotates with a constant angular velocity and the flow field of the impeller is incompressible and inviscid. So, a discrete vortex method (DVM) is used to model the centrifugal by the unsteady Bernoulli equation. Lowson's method is used to predict the acoustic source. A centrifugal impeller and wedge introduced by Weidemann are used in the numerical calculation and the results are compared with the experimental data. Reasonable results are obtained not only for the peak frequencies but also for the amplitudes of the tonal sound.

  • PDF

웨지가 있는 원심 임펠러의 유동 및 방사 음향장 해석(I) -유동장 및 소음원 해석- (An Analysis of the Flow Field and Radiation Acoustic Field of a Centrifugal Impeller with Wedge(I) -An Analysis of the Flow Field and Aeroacoustic Source-)

  • 이덕주;전완호
    • 대한기계학회논문집B
    • /
    • 제25권9호
    • /
    • pp.1157-1164
    • /
    • 2001
  • Centrifugal fans are widely used and the noise generated by these machines causes one of the most serious problems. In general, the centrifugal fan noise is often dominated by tones at BPF(blade passage frequency) and its higher harmonics. This is a consequence of the strong interaction between the flow discharged from the impeller and the cutoff in the casing. However, only a few research have been carried out on predicting the noise because of the difficulty in obtaining detailed information about the flow field and casing effects on noise radiation. The objective of this study is to understand the generation mechanism of sound and to develop a prediction method for the unsteady flow field and the acoustic pressure field of a centrifugal fan. We assume that the impeller rotates with a constant angular velocity and the flow field of the impeller is incompressible and inviscid. So, a discrete vortex method(DVM) is used to model the centrifugal fan and to calculate the flow field. The force of each element on the blade is calculated by the unsteady Bernoulli equation. Lowsons method is used to predict the acoustic source. In order to compare the experimental data, a centrifugal impeller and wedge introduced by Weidemann are used in the numerical calculation and the results are compared with the experimental data. Reasonable results are obtained not only for the peak frequencies but also for the amplitudes of the tonal.

Inclination angle influence on noise of cavitating marine propeller

  • Bal, Sakir
    • Ocean Systems Engineering
    • /
    • 제10권1호
    • /
    • pp.49-65
    • /
    • 2020
  • In this study, the effects of inclined shaft angle on the hydro-acoustic performance of cavitating marine propellers are investigated by a numerical method developed before and Brown's empirical formula. The cavitating blades are represented by source and vortex elements. The cavity characteristics of the blades such as cavitation form, cavity volume, cavity length etc., are computed at a given cavitation number and at a set advance coefficient. A lifting surface method is applied for these calculations. The numerical lifting surface method is validated with experimental results of DTMB 4119 model benchmark propeller. After calculation of hydrodynamic characteristics of the cavitating propeller, noise spectrum and overall sound pressure level (OASPL) are computed by Brown's equation. This empirical equation is also validated with another numerical results found in the literature. The effects of inclined shaft angle on thrust coefficient, torque coefficient, efficiency and OASPL values are examined by a parametric study. By modifying the inclination angles of propeller, the thrust, torque, efficiency and OASPL are computed and compared with each other. The influence of the inclined shaft angle on cavity patterns on the blades are also discussed.