• Title/Summary/Keyword: Vortex liquid

Search Result 103, Processing Time 0.032 seconds

The Application of Preconditioning in Laminar Spray Combustion Analysis (예조건화 압축성 알고리듬을 이용한 층류 분무연소장 해석)

  • Hwang Yong-Sok;Yoon Woong-Sup
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.128-137
    • /
    • 1998
  • In this numerical experiment, the preconditioned compressible Navier-Stokes equation is tested to analyze the laminar spray combustion. Sprayed flow field is formulated by Eulerian-Lagrangian system for the gas and liquid phases each. DSF(Deterministic Separated Flow) model was adopted for the sprays with the vortex model to describe transients of individual droplet heating. Simplified single global reaction model approximates methanol-air reaction with and without disk flame holder. The equation system is discretized by finite difference technique and time integrated by LU-SGS. Due to greatly simplified chemical reaction mechanism and the lack of experimental evidences, most of the efforts were devoted to show the applicability and robustness of preconditioned compressible flow calculation algorithm. Computation results in qualitatively reasonable combusting flow field, hence it is believed that further refinement are required to produce quantitatively accurate solutions.

  • PDF

PIV Measurement of Bulk Flow in a Stirring Mixer (교반혼합기 내의 거대유동에 대한 PIV측정)

  • Kim, Sang-Ki;Kim, Kyung-Chun
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.680-685
    • /
    • 2000
  • Liquid flow in a stirring mixer driven by a six-blade turbine has been investigated experimentally. The flows were quantified by measurements of velocity characteristics. obtained by a Particle Image Velocimetry(PIV). for a blade rotational speed of 100r.p.m. and for two blade clearances from the bottom of the tank. The instantaneous flow fields show that the bulk flow consists of small scale vortices very complicately. However, the mean flow results show that the formation of ring vortices above and below the blade. which depend on the clearance.

  • PDF

A Computation study on Characteristics of Transient Injection of Pintle-type Injector for Direct Injection of LPG (LPG 연료의 직접 분사를 위한 핀틀타입 인젝터의 비정상 분무 특성에 관한 수치해석)

  • Choi, S.H.;Hwang, S.S.
    • Journal of ILASS-Korea
    • /
    • v.4 no.3
    • /
    • pp.15-23
    • /
    • 1999
  • The use of LPG as clean fuel for Diesel engine is very attractive way to reduce soot and NOx emission. In this study, a numerical study has been done to know the transient behavior of LPG fuel in chamber pressures which is held at a pressure above (0.37MPa)and below(0.15MPa)the fuel vapor pressure. Results show that the vortex formed within the start of injection at the leading edge of the spray cone and was most apparent for 0.15MPa chamber pressure case. The high speed photographs and model results showed a narrower cone angle during the quasi-steady spray period at the 0.37MPa chamber pressure compared to the 0.15MPa case. And it can be shown that more realistic vaporization process is necessary to predict the spray length well.

  • PDF

An Experimental Study on Engine Cooling System Improvement (엔진 냉각 시스템 개선에 관한 실험적 연구)

  • Chon, M.S.;Hwang, Y.H.
    • Journal of ILASS-Korea
    • /
    • v.9 no.4
    • /
    • pp.77-82
    • /
    • 2004
  • This paper describes the improvement of engine cooling system. To improve engine cooling performance, the authors approached in two ways. One is to increase water pump performance, changing of impeller shape and lightening of material were carried out. The second one is cooling efficiency rise, which were investigated with head gasket coolant flow passage optimization with flow visualization technique. The test results show that water pump performance was increased effectively, reduction of pump drive torque, and increase of pump flow-rate and pressure rise. Gasket hole pattern optimization test results represent an optimized head coolant flow which stands cross flow from exhaust to intake port side and small vortex were removed.

  • PDF

Numerical simulation of gas-liquid two phase flow in micro tubes

  • Sunakawa, Hideo;Teramoto, Susumu;Nagashima, Toshio
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.341-346
    • /
    • 2004
  • Motion of a bubble inside narrow tube is numerically studied. The numerical code assumes axi-symmetric incompressible flow field. The surface of the bubble is captured by VOF (Volume Of Fluid) method, and it is advected by MARS (Multiphase Advection and Reconstruction Scheme). Air bubble inside water is first studied, and it was found that a strong vortex, which is induced by the pressure difference caused by the surface tension, is formed at the rear part of the bubble. Then flow parameters are parametrically varied to understand the correlation between the bubble shape, the bubble velocity, and the flow parameters. The parametric study revealed that the aspect ratio of the bubble mainly depends on We number, and the oscillation of the bubble speeds is dependent on Re number.

  • PDF

Flow Uniformity Analysis of DOC-DPF System using CFD (CFD를 활용한 DOC-DPF 조합의 유동 균질도 분석)

  • Kim, Taehoon;Park, Sungwook
    • Journal of ILASS-Korea
    • /
    • v.24 no.3
    • /
    • pp.122-129
    • /
    • 2019
  • Flow uniformity in aftertreatment system is an important factor in determining uniform catalytic reaction and filtration. In this study, variety types of DOC-DPF system design were analyzed to increase flow uniformity. For this analysis, ANSYS Fluent was used with porous media setup for DOC and DPF. Turbulent flow was modeled by standard $k-{\varepsilon}$ model excepting porous media. Uniformity index was utilized to evaluate the flow uniformity quantitatively. Reference design showed low velocity region because two large vortex were generated before baffle. When radius of DOC-DPF system was increased, exhaust pressure acting on the inlet decreases and velocity distribution was shifted to one side. When inlet pipe was set to axial center of DOC-DPF system velocity distribution was symmetric. However, flow was not dissipated until the front end of DOC and showed higher uniformity index. When the volume of DOC was reduced while fixed volume of entire DOC-DPF system and baffle plate is located downstream of the DOC-DPF system, there was improvement in uniformity index.

Robust technique using magnetohydrodynamics for safety improvement in sodium-cooled fast reactor

  • Lee, Jong Hui;Park, Il Seouk
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.565-578
    • /
    • 2022
  • Among Generation IV reactors, the sodium-cooled fast reactor (SFR) is attracting attention as a system having great potential for commercial use. Gas entrainment is a thermal-hydraulic issue related to the safety problem of the reactor core in the SFR. Typically, a dipped plate or baffles are installed under the free surface to suppress gas entrainment. However, these approaches can cause gas entrainment in other locations and require many trial-and-error and verifications. In this study, a new strategy using magnetohydrodynamics to suppress gas entrainment in the SFR is proposed. In a counter-flow model, a judgment criterion of gas entrainment occurrence was developed for both water and liquid metal. Moreover, the gas entrainment can be completely suppressed by applying a magnetic field.

Cause Analysis of Flow Accelerated Corrosion and Erosion-Corrosion Cases in Korea Nuclear Power Plants

  • Lee, Y.S.;Lee, S.H.;Hwang, K.M.
    • Corrosion Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.182-188
    • /
    • 2016
  • Significant piping wall thinning caused by Flow-Accelerated Corrosion (FAC) and Erosion-Corrosion (EC) continues to occur, even after the Mihama Power Station unit 3 secondary pipe rupture in 2004, in which workers were seriously injured or died. Nuclear power plants in many countries have experienced FAC and EC-related cases in steam cycle piping systems. Korea has also experienced piping wall thinning cases including thinning in the downstream straight pipe of a check valve in a feedwater pump line, the downstream elbow of a control valve in a feedwater flow control line, and failure of the straight pipe downstream of an orifice in an auxiliary steam return line. Cause analyses were performed by reviewing thickness data using Ultrasonic Techniques (UT) and, Scanning Electron Microscope (SEM) images for the failed pipe, and numerical simulation results for FAC and EC cases in Korea Nuclear Power Plants. It was concluded that the main cause of wall thinning for the downstream pipe of a check valve is FAC caused by water vortex flow due to the internal flow shape of a check valve, the main cause of wall thinning for the downstream elbow of a control valve is FAC caused by a thickness difference with the upstream pipe, and the main cause of wall thinning for the downstream pipe of an orifice is FAC and EC caused by liquid droplets and vortex flow. In order to investigate more cases, additional analyses were performed with the review of a lot of thickness data for inspected pipes. The results showed that pipe wall thinning was also affected by the operating condition of upstream equipment. Management of FAC and EC based on these cases will focus on the downstream piping of abnormal or unusual operated equipment.

An Experimental Study on Mechanism of Combustion Frequencies in Model Combustor with V-gutter type Flameholder (V-gutter형 보염기를 장착한 모델 연소기 내의 연소 주파수 발생 메커니즘 연구)

  • Song, Jin-Kwan;Hwang, Jeong-Jae;Song, Jae-Cheon;Yoon, Young-Bin;Lee, Jong-Guen
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.277-280
    • /
    • 2009
  • Mechanism of combustion frequencies occurring during combustion is experimentally investigated in model combustor with V-gutter flameholder. this combustor has a long duct shape with a cross section area of $40{\times}40\;mm$. The v-gutter type flameholder with 14mm width is mounted at the bottom of combustor. Kerosene and methane were used as fuel, and these fuel were injected transversely into air crossflow. It is found that combustion frequencies were considered as 1L longitudinal mode caused by combustor geometry and vortex shedding mode of flameholder. And fuel phase effect and nozzle effect were also observed in the low frequency range.

  • PDF

Simulation of viscous and inviscid rayleigh-taylor instability with surface tension by using MPS

  • Kim, Kyung Sung;Kim, Moo Hyun
    • Ocean Systems Engineering
    • /
    • v.8 no.2
    • /
    • pp.167-182
    • /
    • 2018
  • RTI (Rayleigh-Taylor instability) is investigated by a multi-liquid MPS (Moving Particle Semi-implicit) method for both viscous and inviscid flows for various density differences, initial-disturbance amplitudes, viscosities, and surface tensions. The MPS simulation can be continued up to the late stage of high nonlinearity with complicated patterns and its initial developments agree well with the linear theoretical results. According to the relevant linear theory, the difference between inviscid and viscous fluids is the rising velocity at which upward-mushroom-like RTI flow with vortex formation is generated. However, with the developed MPS program, significant differences in both growing patters and developing speeds are observed. Also, more dispersion can be observed in the inviscid case. With larger Atwood (AT) number, stronger RTI flows are developed earlier, as expected, with higher potential-energy differences. With larger initial disturbances, quite different patterns of RTI-development are observed compared to the small-initial-disturbance case. If AT number is small, the surface tension tends to delay and suppress the RTI development when it is sufficiently large. Interestingly, at high AT number, the RTI-suppressions by increased surface tension become less effective.