• Title/Summary/Keyword: Vortex interaction

Search Result 364, Processing Time 0.024 seconds

Shock Reflection and Penetration Impinging into a Vortex (I) - Experimental Model- (와동에 입사하는 충격파의 반사 및 투과(I))

  • Jang, Se-Myeong;Jang, Geun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.9
    • /
    • pp.1311-1318
    • /
    • 2002
  • An experimental model is investigated in this paper using the experimental method with a shock tube and the numerical technique. The shock-vortex interaction generated by this model is visualized with various methods: holographic interferometry, shodowgraphy, and numerical computation. In terms of shock dynamics, there are two meaningful physics in the present problem. They are reflective wave from the slip layer at the vortex edge and transmitted shock penetrating the vortex core. The discussion in this study is mainly focused on the two kinds of waves contributing to the quadrupolar pressure distribution around the vortex center during the interaction.

Successive Interactions of a Shock Wave with Serially Arranged Vortices

  • Chang, Se-Myong;Chang, Keun-Shik
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.664-670
    • /
    • 2004
  • Navier-Stokes computation based on a new simplified model is proposed to investigate the interactions of a moving shock wave with multiple vortices arranged in the serial manner. This model problem simulates shock-vortexlet interactions at the shear layer of a compressible vortex often observed in the experiment. Applying the Foppl's idea, we extended the Rankin's model generally used for the description of a single vortex to the multi-vortex version. The acoustic pulses accelerated and decelerated are successively generated and propagated from each shock-vortex interaction, which simply explains the genesis of eccentrically diverging acoustic waves appearing in the experimental photograph.

Numerical simulation of unsteady propeller/rudder interaction

  • He, Lei;Kinnas, Spyros A.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.6
    • /
    • pp.677-692
    • /
    • 2017
  • A numerical approach based on a potential flow method is developed to simulate the unsteady interaction between propeller and rudder. In this approach, a panel method is used to solve the flow around the rudder and a vortex lattice method is used to solve the flow around the propeller, respectively. An iterative procedure is adopted to solve the interaction between propeller and rudder. The effects of one component on the other are evaluated by using induced velocities due to the other component at every time step. A fully unsteady wake alignment algorithm is implemented into the vortex lattice method to simulate the unsteady propeller flow. The Rosenhead-Moore core model is employed during the wake alignment procedure to avoid the singularities and instability. The Lamb-Oseen vortex model is adopted in the present method to decay the vortex strength around the rudder and to eliminate unrealistically high induced velocity. The present methods are applied to predict the performance of a cavitating horn-type rudder in the presence of a 6-bladed propeller. The predicted cavity patterns compare well with those observed from the experiments.

Numerical Study on Shock-Vortex Interaction Behind a Flat Plate (평판 뒤 전단층에서의 충격파-와동 상호 간섭에 대한 수치적 연구)

  • Chang Se-Myong;Chang Keun-Shik
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.23-28
    • /
    • 1999
  • In this paper we study numerically the shock-vortex interaction in the shear layer generated by moving shock waves above and below a flat plate. The faster normal shock is diffracted at the tip of the flat plate, producing a starting vortex. The slower normal shock below the flat plate arrives soon later to run across the vortex and make interaction. The two shocks are merged together and reflected back at the closed end of the shock tube to impinge on the shear layer developing multiple vortexlets. The computational simulation based on Euler and Navier-Stokes equations shows good prediction.

  • PDF

RANS Simulation of a Tip-Leakage Vortex on a Ducted Marine Propulsor

  • Kim, Jin;Eric Peterson;Frederick Stern
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.1
    • /
    • pp.10-30
    • /
    • 2004
  • High-fidelity RANS simulations are presented for a ducted marine propulsor, including verification & validation (V&V) using available experimental fluid dynamics (EFD) data. CFDSHIP-IOWA is used with $\textsc{k}-\omega$ turbulence model and extensions for relative rotating coordinate system and Chimera overset grids. The mesh interpolation code PEGASUS is used for the exchange of the flow information between the overset grids. Intervals V&V for thrust, torque, and profile averaged radial velocity just downstream of rotor tip are reasonable in comparison with previous results. Flow pattern displays interaction and merging of tip-leakage and trailing edge vortices. In interaction region, multiple peaks and vorticity are smaller, whereas in merging region, better agreement with EFD. Tip-leakage vortex core position, size, circulation, and cavitation patterns for $\sigma=5$ also show a good agreement with EFD, although vortex core size is larger and circulation in interaction region is smaller.

Extinction in a Counterflow Nonpremixed Flame Interacting with a Vortex (와동과 상호작용하는 대향류 비예혼합화염의 소염특성)

  • Oh, Chang-Bo;Lee, Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1401-1411
    • /
    • 2003
  • A two-dimensional direct numerical simulation was performed to investigate the flame structure of CH$_4$$N_2$-air counterflow nonpremixed flame interacting with a single vortex. The detailed transport properties and a modified 16-step augmented reduced mechanism based on Miller and Bowman's detailed chemistry were adopted in this simulation. The characteristic vortex and chemical time scales were introduced to quantify and investigate the extinction phenomenon during a flame-vortex interaction. The results showed that fuel- and air-side vortex cause an unsteady extinction. In this case, the flame interacting with a vortex was extinguished at much larger scalar dissipation rate than steady flame. It was also found that the air-side vortex extinguished a flame more rapidly than the fuel-side vortex. Furthermore, it was noted that the degree of unsteady effect experienced by a flame can be investigated by comparing the above two characteristic time scales, and this analysis could give an appropriate reason for the results of the previously reported experiment.

Unsteady Response of Counterflow Nonpremixed Flames Interacting with a Vortex (와동과 상호작용하는 대향류 비예혼합화염의 비정상 응답특성)

  • Oh, Chang-Bo;Park, Jeong;Lee, Chang-Eon
    • Journal of the Korean Society of Combustion
    • /
    • v.9 no.2
    • /
    • pp.10-17
    • /
    • 2004
  • A two-dimensional direct numerical simulation is performed to investigate the flame structure of $CH_4/N_2-Air$ counterflow nonpremixed flame interacting with a single vortex. The detailed transport properties and a modified 16-step augmented reduced mechanism based on Miller and Bowman#s detailed reaction mechanism are adopted in this calculation. To quantify the strain on flame induced by a vortex, a scalar dissipation rate (SDR) is introduced. The results show that fuel-side and air-side vortex cause an unsteady extinction. In this case, the flame interacting with a vortex is extinguished at much larger SDR than steady flame. It is also found that air-side vortex extinguishes a flame more rapidly than fuel-side vortex. The unsteady effect induced by flame-vortex interaction does not lead to a transient OH overshoot of the maximum steady concentration observed in experiment, while $HO_2$ radical increases more than the maximum steady concentration with increasing SDR. In addition, it is seen that NO and $NO_2$ are not sensitive to the unsteady variation of SDR.

  • PDF

A numerical investigation on the oblique shock wave/vortex interaction (경사충격파와 와류간의 상호작용에 관한 수치적 연구)

  • Moon, Seong-Mok;Kim, Chong-Am;Rho, Oh-Hyun;Hong, Seung-Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.8
    • /
    • pp.20-28
    • /
    • 2004
  • For the prediction on the onset of oblique shock wave-induced vortex breakdown, computational studies on the Oblique Shock wave/Vortex Interaction (OSVI) are conducted and compared with both experimental results and analytic mode1. A Shock-stable numerical scheme, the Roe scheme with Mach number-based function (RoeM), and a two-equation eddy viscosity-transport approach arc used for three-dimensional turbulent flow computations. The computational configuration is identical to available experiment, and we attempt to ascertain the effect of parameters such as a vortex strength, streamwise velocity deficit, and shock strength at a freestream Mach number of 2.49. Numerical simulations using the k-w SST turbulence model and suitably modeled vortex profiles are able to accurately reproduce many fine features through a direct comparison with experimental observations. The present computational approach to determine the criterion on the onset of oblique shock wave-induced vortex breakdown is found to be in good agreement with both the experimental result and the analytic prediction.

A Computational Model on Shock-Vortex Interaction and Acoustic Radiation (충격파-와동 간섭 및 음향 방사에 대한 수치 모델)

  • Chang Se-Myong;Lee Soogab;Chang Keun-Shik
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.45-50
    • /
    • 2000
  • We study a conceptual numerical model on shock-vortex interaction setting an impulsive shock in a compressible vertex. Navier-Stokes equations are solved for the investigation of interactive structure and acoustic wave propagation. The rotationally symmetric vortex enforces two compression-expansion pairs resultantly forming a quadrupolar shape. These compressive and expansive waves cylindrically propagate to the far field and turn to acoustic waves. Using a fine uniform Cartesian grid system and a TVD-high resolution method, the flow data irl: precisely obtained to extend our interest to the sound source.

  • PDF

Unsteady Response of Counterflow Nonpremixed Flames Interacting with a Votex (와동과 상호작용하는 대향류 비예혼합화염의 비정상 응답특성)

  • Oh, Chang-Bo;Park, Jeong;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.52-60
    • /
    • 2002
  • A two-dimensional direct numerical simulation is performed to investigate the flame structure of $CH_4/N_2-Air$ counterflow nonpremixed flame interacting with a single vortex. The detailed transport properties and a modified 16-step augmented reduced mechanism based on Miller and Bowman's detailed reaction mechanism are adopted in this calculation. To quantify the strain on flame induced by a vortex, a scalar dissipation rate (SDR) is introduced. Results show that the fuel and air-side vortex cause an unsteady extinction. In this case, the flame interacting with a vortex is extinguished at much larger SDR than steady flame. It is also found that air-side vortex extinguishes a flame more rapidly than fuel-side vortex. The unsteady effect induced by flame-vortex interaction does not lead to a transient OH overshoot of the maximum steady concentration observed in experiment, while $HO_2$ radical increases more than the maximum steady concentration with increasing SDR. In addition, it is seen that NO and $NO_2$ are not sensitive to the unsteady variation of SDR.

  • PDF